Skip to main content

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 68))

Abstract

Xenoturbellida is a group of benthic marine invertebrates with a very simple bilaterian body plan. Together with Acoelomorpha, it constitutes the clade Xenacoelomorpha, recently interpreted as a sister group to all other extant bilaterians (=Nephrozoa). Therefore, it occupies an important phylogenetic position for studies on origins and evolution of Bilateria. However, due to a number of reasons, developmental and reproductive studies on Xenoturbella have been scarce. In this chapter, I will summarize what is known concerning the reproduction and development of Xenoturbellida, including information from five species that were recently discovered. Gonads are absent in xenoturbellids, and gametes are found in various parts of the body. The gametes are released through ruptures of the body wall, and therefore, the fertilization is presumably external. After holoblastic radial cleavage, embryos hatch as free-swimming hatchlings with uniform ciliation over the surface. Apical tuft forms later in development, and 5 days after hatching, the larvae begin to settle on the substrate. Comparison with the other marine invertebrate larvae suggests that the morphologically simple swimming larvae described in Xenoturbella represent an ancestral larval type of all metazoans and bilaterians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achatz JG, Chiodin M, Salvenmoser W, Tyler S, Martinez P (2013) The Acoela: on their kind and kinships, especially with nemertodermatids and xenoturbellids (Bilateria incertae sedis). Org Divers Evol 13:267–286

    Article  Google Scholar 

  • Cannon JT, Vellutini BC, Smith J III, Ronquist F, Jondelius U, Hejnol A (2016) Xenacoelomorpha is the sister group to Nephrozoa. Nature 530:89–93

    Article  CAS  Google Scholar 

  • Deheyn D, Watson NA, Jangoux M (1998) Symbioses in Amphipholis squamata (Echinodermata, Ophiuroidea, Amphiuridae): geographical variation of infestation and effect of symbionts on the host’s light production. Int J Parasitol 28:1413–1424

    Article  CAS  Google Scholar 

  • Gehrke AR, Srivastava M (2016) Neoblasts and the evolution of whole-body regeneration. Curr Opin Genet Dev 40:131–137

    Article  CAS  Google Scholar 

  • Hauszprunar G (2016) Review of data for a morphological look on Xenacoelomorpha (Bilateria incertae sedis). Org Divers Evol 16:363–389

    Article  Google Scholar 

  • Hejnol A (2015) Acoelomorpha and Xenoturbellida. In: Wanninger A (ed) Evolutionary developmental biology of invertebrates, vol 1. Springer, Wien, pp 203–214

    Chapter  Google Scholar 

  • Hejnol A, Pang K (2016) Xenacoelomorpha’s significance for understanding bilaterian evolution. Curr Opin Genet Dev 39:48–54

    Article  CAS  Google Scholar 

  • Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW, Edgecombe GD, Martinez P, Baguna J, Bailly X, Jondelius U, Wiens M, Muller WEG, Seaver E, Wheeler WC, Martindale MQ, Giribet G, Dunn CW (2009) Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc R Soc Biol Sci B 276:4261–4270

    Article  Google Scholar 

  • Jondelius U, Wallberg A, Hooge M, Raikova OI (2011) How the worm got its pharynx: phylogeny, classification and Bayesian assessment of character evolution in Acoela. Syst Biol 60:845–871

    Article  Google Scholar 

  • Martín-Durán JM, Pang K, Børve A, Lê HS, Furu A, Cannon JT, Jondelius U, Hejnol A (2018) Convergent evolution of bilaterian nerve cords. Nature 553:45–50

    Article  Google Scholar 

  • Nakano H (2015) What is Xenoturbella? Zool Lett 1:22

    Article  Google Scholar 

  • Nakano H, Miyazawa H (2019) A new species of Orthonectida that parasitizes Xenoturbella bocki: implications for studies on Xenoturbella. Biol Bull 236:66–73

    Article  Google Scholar 

  • Nakano H, Lundin K, Bourlat SJ, Telford MJ, Funch P, Nyengaard JR, Obst M, Thorndyke MC (2013) Xenoturbella bocki exhibits direct development with similarities to Acoelomorpha. Nat Commun 4:1537

    Article  Google Scholar 

  • Nakano H, Miyazawa H, Maeno A, Shiroishi T, Kakui K, Koyanagi R, Kanda M, Satoh N, Omori A, Kohtsuka H (2017) A new species of Xenoturbella from the western Pacific Ocean and the evolution of Xenoturbella. BMC Evol Biol 17:245

    Article  Google Scholar 

  • Nakano H, Miyazawa H, Maeno A, Shiroishi T, Kakui K, Koyanagi R, Kanda M, Satoh N, Omori A, Kohtsuka H (2018) Correction to: a new species of Xenoturbella from the western Pacific Ocean and the evolution of Xenoturbella. BMC Evol Biol 18:83

    Article  Google Scholar 

  • Obst M, Nakano H, Bourlat SJ, Thorndyke MC, Telford MJ, Nyengaard JR, Funch P (2011) Spermatozoon ultrastructure of Xenoturbella bocki (Westblad 1949). Acta Zool 92:109–115

    Article  Google Scholar 

  • Philippe H, Brinkmann H, Copley RR, Moroz LL, Nakano H, Poustka AJ, Wallberg A, Peterson KJ, Telford MJ (2011) Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255–258

    Article  CAS  Google Scholar 

  • Raikova O, Reuter M, Jondelius U, Gustafsson M (2000) An immunocytochemical and ultrastructural study of the nervous and muscular systems of Xenoturbella westbladi (Bilateria inc. sed.). Zoomorphology 120:107–118

    Article  Google Scholar 

  • Robertson HE, Lapraz F, Egger B, Telford MJ, Schiffer PH (2017) The mitochondrial genomes of the acoelomorph worms Paratomella rubra, Isodiametra pulchra and Archaphanostoma ylvae. Sci Rep 7:1847

    Article  Google Scholar 

  • Rouse GW, Wilson NG, Carvajal JI, Vrijenhoek RC (2016) New deep-sea species of Xenoturbella and the position of Xenacoelomorpha. Nature 530:94–97

    Article  CAS  Google Scholar 

  • Ruiz-Trillo I, Paps J (2016) Acoelomorpha; earliest branching bilaterians or deuterostomes? Org Divers Evol 16:391–399

    Article  Google Scholar 

  • Sikes JM, Bely AE (2008) Radical modification of the A-P axis and the evolution of asexual reproduction in Convolutriloba acoels. Evol Dev 10:619–631

    Article  CAS  Google Scholar 

  • Stach T, Dupont S, Israelsson O, Fauville G, Nakano H, Kånneby T, Thorndyke M (2005) Nerve cells of Xenoturbella bocki (phylum uncertain) and Harrimania kupfferi (Enteropneusta) are positively immunoreactive to antibodies raised against echinoderm neuropeptides. J Mar Biol Assoc UK 85:1519–1524

    Article  CAS  Google Scholar 

  • Westblad E (1949) Xenoturbella bocki n.g, n.sp. a peculiar, primitive turbellarian type. Ark Zool 1:3–29

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Nakano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakano, H. (2019). Development of Xenoturbellida. In: Tworzydlo, W., Bilinski, S. (eds) Evo-Devo: Non-model Species in Cell and Developmental Biology. Results and Problems in Cell Differentiation, vol 68. Springer, Cham. https://doi.org/10.1007/978-3-030-23459-1_11

Download citation

Publish with us

Policies and ethics