Skip to main content

Sixth-Order Adaptive Non-uniform Grids for Singularly Perturbed Boundary Value Problems

  • Conference paper
  • First Online:
Numerical Geometry, Grid Generation and Scientific Computing

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 131))

  • 709 Accesses

Abstract

In this paper, a sixth order adaptive non-uniform grid has been developed for solving a singularly perturbed boundary-value problem (SPBVP) with boundary layers. For this SPBVP with a small parameter in the leading derivative, an adaptive finite difference method based on the equidistribution principle, is adopted to establish 6th order of convergence. To achieve this supra-convergence, we study the truncation error of the discretized system and obtain an optimal adaptive non-uniform grid. Considering a second order three-point central finite-difference scheme, we develop sixth order approximations by a suitable choice of the underlying optimal adaptive grid. Further, we apply this optimal adaptive grid to nonlinear SPBVPs, by using an extra approximations of the nonlinear term and we obtain almost 6th order of convergence. Unlike other adaptive non-uniform grids, our strategy uses no pre-knowledge of the location and width of the layers. We also show that other choices of the grid distributions lead to a substantial degradation of the accuracy. Numerical results illustrate the effectiveness of the proposed higher order adaptive numerical strategy for both linear and nonlinear SPBVPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, A.K., Peckover, R.S.: Nonuniform grid generation for boundary layer problems. Comput. Phys. Commun. 19(2), 171–178 (1980)

    Article  Google Scholar 

  2. Ascher, U.M., Mattheij, R.M., Russell, R.D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. Series in Computational Mathematics, vol. 13. Prentice Hall, Englewood Cliffs (1988)

    Google Scholar 

  3. Beckett, G., Mackenzie, J.A.: On a uniformly accurate finite difference approximation of a singularly perturbed reaction-diffusion problem using grid equidistribution. J. Comp. Appl. Math. 131, 381–405 (2001)

    Article  MathSciNet  Google Scholar 

  4. Brown, R.R.: Numerical solution of boundary value problems using non-uniform grids. J. Soc. Ind. Appl. Math. 10(3), 475–495 (1962)

    Article  Google Scholar 

  5. Budd, C.J., Huang, W., Russell, R.D.: Adaptivity with moving grids. Acta Numer. 18, 111–241 (2009)

    Article  MathSciNet  Google Scholar 

  6. Connett, W.C., Golik, W.L., Schwartz, A.L.: Superconvergent grids for two-point boundary value problems. Mat. Apl. Comput. 10, 43–58 (1991)

    MathSciNet  MATH  Google Scholar 

  7. Das, P., Mehrmann, V.: Numerical solution of singularly perturbed convection-diffusion-reaction problems with two small parameters. BIT Numer Math 56(1), 51–76 (2016)

    Article  MathSciNet  Google Scholar 

  8. De Rivas, E.K.: On the use of non-uniform grids in finite difference equations. J. Comput. Phys. 10, 202–210 (1972)

    Article  Google Scholar 

  9. Degtyarev, L.M., Prozdov, V.V., Ivanova, T.S.: Mesh method for singularly perturbed one dimensional boundary value problems, with a mesh adapting to the solution. Acad. Sci. USSR 23(7), 1160–1169 (1987)

    Google Scholar 

  10. Eckhaus, W.: Asymptotic Analysis of Singular Perturbations. Studies in Mathematics and Its Applications, vol. 9. North-Holland, Amsterdam (1979)

    Google Scholar 

  11. Gartland, Jr E.C.: Graded-mesh difference schemes for singularly perturbed two-point boundary value problems. Math. Comput. 51(184):631–657, 1988.

    Article  MathSciNet  Google Scholar 

  12. Haynes, R.D., Huang, W., Zegeling, P.A.: A numerical study of blowup in the harmonic map heat flow using the MMPDE moving mesh method. Numer. Math. Theory Methods Appl. 6(2), 364–383 (2013)

    Article  MathSciNet  Google Scholar 

  13. Hoffman, J.D.: Relationship between the truncation errors of centred finite-difference approximations on uniform and non-uniform meshes. J. Comput. Phys. 46(3), 469–474 (1982)

    Article  MathSciNet  Google Scholar 

  14. Hoog, F.D., Jackett, D.: On the rate of convergence of finite difference schemes on non-uniform grids. ANZIAM J. 26(3), 247–256 (1985)

    MATH  Google Scholar 

  15. Kaya, A.: Finite difference approximations of multidimensional unsteady convection-diffusion-reaction equation. J. Comput. Phys. 285, 331–349 (2015)

    Article  MathSciNet  Google Scholar 

  16. Kaya, A., Sendur, A.: Finite difference approximations of multidimensional convection-diffusion-reaction problems with small diffusion on a special grid. J. Comput. Phys. 300, 574–591 (2015)

    Article  MathSciNet  Google Scholar 

  17. Keller, H.B.: Numerical methods in boundary-layer theory. Ann. Rev. Fluid Mech. 10, 417–433 (1978)

    Article  MathSciNet  Google Scholar 

  18. Khakimzyanov, G., Dutykh, D.: On superconvergence phenomenon for second order centered finite differences on non-uniform grids. J. Comput. Appl. Math. 326, 1–14 (2017)

    Article  MathSciNet  Google Scholar 

  19. Khodier, A.M.M.: A finite difference scheme on non-uniform grids. Int. J. Comput. Math. 77(1), 145–152 (1999)

    Article  MathSciNet  Google Scholar 

  20. Khodier, A.M.M., Hassan, A.Y.: One dimensional adaptive grid generation. Int. J. Math. Math. Sci. 20(3), 577–584 (1997)

    Article  MathSciNet  Google Scholar 

  21. Liseikin, V.D.: Grid Generation Methods. Springer, Berlin (2009)

    MATH  Google Scholar 

  22. Miller, J.J.H., O’Riordan, E., Shishkin, I.G.: Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions. World Scientific, Singapore (1996)

    Book  Google Scholar 

  23. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer Series in Computational Mathematics, vol. 23. Springer, Berlin (1994).

    Google Scholar 

  24. Roberts, G.O.: Computational meshes for boundary layer problems. In: Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics. Springer, Berlin (1971)

    Google Scholar 

  25. Schetz, J.A.: Foundations of Boundary Layer Theory for Momentum, Heat, and Mass Transfer. Prentice-Hall, Englewood Cliffs (1984)

    Google Scholar 

  26. Schlichting, H., Gersten, K., Krause, E., Oertel, H.: Boundary Layer Theory, vol. 7. McGraw-Hill, New York (1960)

    Google Scholar 

  27. Sundqvist, H.: A simple finite difference grid with non-constant intervals. Tellus 22(1), 26–31 (1970)

    Article  MathSciNet  Google Scholar 

  28. Tang, T., Xu, J. (eds.): Theory and Application of Adaptive Moving Grid methods, Chapter 7. Mathematics Monograph Series: Adaptive Computations: Theory and Algorithms, vol. 6. Science Press, Beijing, (2007)

    Google Scholar 

  29. Veldman, A.E.P., Rinzema, K.: Playing with non-uniform grids. J. Eng. Math. 26, 119–130 (1992)

    Article  Google Scholar 

  30. Verhulst, F.: Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics. Texts in Applied Mathematics, vol. 50. Springer, Berlin (2005)

    Google Scholar 

  31. Vinokur, M.: On one dimensional stretching functions for finite difference calculations. J. Comput. Phys. 50(2), 215–234 (1983)

    Article  MathSciNet  Google Scholar 

  32. Yamaleev, N.K.: Minimization of the truncation error by grid adaptation. J. Comput. Phys. 170, 459–497 (2001)

    Article  MathSciNet  Google Scholar 

  33. Zegeling, P.A., Lagzi, I., Izsak, F.: Transition of Liesegang precipitation systems: simulations with an adaptive grid PDE method. Commun. Comput. Phys. 10(4), 867–881 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

Sehar Iqbal acknowledges the financial support by the Schlumberger Foundation (Faculty for the Future award).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Andries Zegeling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iqbal, S., Zegeling, P.A. (2019). Sixth-Order Adaptive Non-uniform Grids for Singularly Perturbed Boundary Value Problems. In: Garanzha, V., Kamenski, L., Si, H. (eds) Numerical Geometry, Grid Generation and Scientific Computing. Lecture Notes in Computational Science and Engineering, vol 131. Springer, Cham. https://doi.org/10.1007/978-3-030-23436-2_8

Download citation

Publish with us

Policies and ethics