Skip to main content

Alzheimer Disease: Convergence Result from a Discrete Model Towards a Continuous One

  • Chapter
  • First Online:
Trends in Biomathematics: Mathematical Modeling for Health, Harvesting, and Population Dynamics
  • 575 Accesses

Abstract

Alzheimer disease (AD) is a neurodegenerative disease affecting more than 50 million people worldwide. AD is in part caused by the accumulation of peptides inside the brain to form oligomers or fibrils. Oligomers can interact with neurons via membrane receptors such as prion proteins (PrP c) and misfold them into oligomeric prions (PrP ol) able to transmit a death signal to neurons.

The purpose of this talk is to show a convergence result from a discrete Alzheimer disease model (Helal et al., J Math Biol 78:57–81, 2018) to a continuous one (Ciuperca et al., Alzheimer’s disease and prion: an in vitro mathematical model, preprint).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Barz, Q. Liao, B. Strodel, Pathways of amyloid- aggregation depend on oligomer shape. J. Am. Chem. Soc. 140(1), 319–327 (2017)

    Article  Google Scholar 

  2. G. Bitan, M.D. Kirkitadze, A. Lomakin, S.S. Vollers, G.B. Benedek, D.B. Teplow, Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways. Proc. Natl. Acad. Sci. U. S. A. 100(1), 330–335 (2003). ISSN 0027-8424

    Google Scholar 

  3. H. Brezis, Analyse Fonctionnelle: théorie et applications. Dunod 120–130 (1999). ISBN 2100493361

    Google Scholar 

  4. N. Carulla, G.L. Caddy, D.R. Hall, J. Zurdo, M. Gair, M. Feliz, E. Giralt, C.V. Robinson, C.M. Dobson, Molecular recycling within amyloid fibrils. Nature 436(7050), 554 (2005)

    Google Scholar 

  5. M. Cisse, L. Mucke, A prion protein connection. Nature 457, 1090–1091 (2009). ISSN 08866236

    Google Scholar 

  6. I.S. Ciuperca, M. Dumont, A. Lakmeche, P. Mazzocco, L. Pujo-Menjouet, et al., Alzheimer’s disease and prion: an in vitro mathematical model. Discrete Contin. Dyn. Syst. Ser. B (American Institute of Mathematical Sciences) (2018). hal-01708659

    Google Scholar 

  7. P.T. Francis, A.M. Palmer, M. Snape, G.K. Wilcock, The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J. Neurol. Neurosurg. Psychiatry 66(2), 137–147 (1999)

    Article  Google Scholar 

  8. D.B. Freir, A.J. Nicoll, I. Klyubin, S. Panico, J.M. Mc Donald, E. Risse, E.A. Asante, M.A. Farrow, R.B. Sessions, H.R. Saibil et al., Interaction between prion β assemblies can be therapeutically targeted at multiple sites. Nat. Commun. 2, 336 (2011)

    Article  Google Scholar 

  9. S.L. Gallion, Modeling amyloid-beta as homogeneous dodecamers and in complex with cellular prion protein. PLoS ONE 7(11), e49375 (2012)

    Google Scholar 

  10. D.A. Gimbel, H.B. Nygaard, E.E. Coffey, E.C. Gunther, J. Lauren, Z.A. Gimbel, S.M. Strittmatter, Memory impairment in transgenic Alzheimer mice requires cellular prion protein. J. Neurosci. 30(18), 6367–6374 (2010). ISSN 0270-6474

    Google Scholar 

  11. L.E. Hebert, J. Weuve, P.A. Scherr, D.A. Evans, Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology 80(19), 1778–1783 (2013)

    Article  Google Scholar 

  12. M. Helal, A. Lakmeche, P. Mazzocco, A. Perrillat-Mercerot, L. Pujo-Menjouet, H. Rezaei, L.M. Tine, Stability analysis of a steady state of a model describing Alzheimer’s disease and interactions with prion proteins. J. Math. Biol. 78, 57–81 (2018). https://doi.org/10.1007/s00285-018-1267-1

    Article  MathSciNet  Google Scholar 

  13. V.J. Hilser, J.O. Wrabl, H.N. Motlagh, Structural and energetic basis of allostery. Ann. Rev. Biophys. 41, 585609 (2012)

    Article  Google Scholar 

  14. C. Jack, D.S. Knopman, W.J. Jagust, R.C. Petersen, M.W. Weiner, P.S. Aisen, L.M. Shaw, P. Vemuri, H.J. Wiste, S.D. Weigand et al., Update on hypothetical model of Alzheimer’s disease biomarkers. Lancet Neurol. 12(2), 207–216 (2013)

    Article  Google Scholar 

  15. G.B. James. The role of amyloid beta in the pathogenesis of Alzheimer’s disease. J. Clin. Pathol. 66, 362–366 (2013). ISSN 1472-4146

    Google Scholar 

  16. R.D. Johnson, J.A. Schauerte, C.C. Chang, K.C. Wisser, J.C. Althaus, C.J.L. Carruthers, M.A. Sutton, D.G. Steel, A. Gafni, Single-molecule imaging reveals Aβ42:Aβ40 ratio-dependent oligomer growth on neuronal processes. Biophys. J. 104(4), 894–903 (2013). ISSN 00063495

    Google Scholar 

  17. N. Kandel, T. Zheng, Q. Huo, S.A. Tatulian, Membrane binding and pore formation by a cytotoxic fragment of amyloid β peptide. J. Phys. Chem. B 121(45), 1029310305 (2017)

    Google Scholar 

  18. E. Karran, M. Mercken, B. De Strooper, The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 10(9), 698–712 (2011). ISSN 1474-1776

    Google Scholar 

  19. H.W. Kessels, L.N. Nguyen, S. Nabavi, R. Malinow, The prion protein as a receptor for amyloid-beta. Nature 466(7308), E3 (2010)

    Google Scholar 

  20. J. Laurn, D.A. Gimbel, H.B. Nygaard, J.W. Gilbert, S.M. Strittmatter, Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature 457(7233), 1128–1132 (2009). ISSN 0028-0836

    Google Scholar 

  21. I.M. Lifshitz, V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids. 19(1–2), 35–50 (1961)

    Article  Google Scholar 

  22. R.B. Maccioni, G. Faras, I. Morales, L. Navarrete, The revitalized tau hypothesis on Alzheimer’s disease. Arch. Med. Res. 41(3), 226–231 (2010)

    Article  Google Scholar 

  23. M. Nick, Y. Wu, N.W. Schmidt, S.B. Prusiner, J. Sthr, W.F. DeGrado, A long-lived Aβ oligomer resistant to fibrillization. Biopolymers (2018). https://doi.org/10.1002/bip.23096

  24. J. Nunan, D.H. Small, Regulation of APP cleavage by alpha-,beta- and gamma-secretases. FEBS Lett. 483(1), 6–10 (2010). ISSN 00145793

    Google Scholar 

  25. S.A. Small, K. Duff, Linking Aβ and τ in late-onset Alzheimer’s disease: a dual pathway hypothesis. Arch. Med. Res. 43(8), 600–608 (2012). ISSN 01884409

    Google Scholar 

  26. A.L. Sosa-Ortiz, I. Acosta-Castillo, M.J. Prince, Epidemiology of dementias and Alzheimer’s disease. Arch. Med. Res. 43(8), 600–608 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Tine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caléro, M., Ciuperca, I.S., Pujo-Menjouet, L., Tine, L.M. (2019). Alzheimer Disease: Convergence Result from a Discrete Model Towards a Continuous One. In: Mondaini, R. (eds) Trends in Biomathematics: Mathematical Modeling for Health, Harvesting, and Population Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-23433-1_25

Download citation

Publish with us

Policies and ethics