Skip to main content

Secretome of Mesenchymal Stem Cells and its Impact on Chronic Obstructive Pulmonary Disease

  • Chapter
  • First Online:
  • 437 Accesses

Part of the book series: Stem Cells in Clinical Applications ((SCCA))

Abstract

Chronic obstructive pulmonary disease (COPD) is characterized by irreversible loss of lung function that stem from two mechanisms, inflammation and senescence. Cross talk between these two mechanisms accelerate the development of COPD; thus, targeting these two pathways may offer benefits in the treatment of COPD. Growing evidence has shown mesenchymal stem cells as a promising candidate for the treatment of COPD. Over the years, many studies have been conducted to decipher the therapeutic effect of MSC in COPD and the mechanisms involved, in the hope of utilizing these cells as a new therapeutic strategy for COPD. However, the cell-based therapy using MSC is presented with many obstacles including low engraftment at the site of injury, the risk of microvascular occlusion, unwanted differentiation, and also the risk of malignant transformation. Recently, researchers begin to look at the possibility of using MSC-derived extracellular vesicles as an alternative to MSC. Here we review the effect of MSC and MSC-derived EV in modulating inflammation, and senescence in COPD. We also review current treatment and side effects in COPD, and senolytic drugs, a new therapeutic strategy targeting the senescent cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. From the Global Strategy for the Diagnosis, Management and Prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD); 2017. Available from http://goldcopd.org.

  2. Celli BR, et al. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J. 2004;23(6):932–46.

    Article  CAS  PubMed  Google Scholar 

  3. Churg A, Cosio M, Wright JL. Mechanisms of cigarette smoke-induced COPD: insights from animal models. Am J Physiol Lung Cell Mol Physiol. 2008;294(4):L612–31.

    Article  CAS  PubMed  Google Scholar 

  4. Grove D, Weiss DJ, Sueblinvong V. Mesenchymal stem cells: promise for chronic obstructive pulmonary disease therapy? Therapy. 2009;6(6):779–82.

    Article  Google Scholar 

  5. Hardie JA, Buist AS, Vollmer WM, Ellingsen I, Bakke PS, Mørkve O. Risk of over-diagnosis of COPD in asymptomatic elderly never-smokers. Eur Respir J. 2002;20(5):1117–22.

    Article  CAS  PubMed  Google Scholar 

  6. Fukuchi Y. The aging lung and chronic obstructive pulmonary disease: similarity and difference. Proc Am Thorac Soc. 2009;6(7):570–2.

    Article  CAS  PubMed  Google Scholar 

  7. Hara H, Araya J, Ito S, Kobayashi K, Takasaka N, Yoshii Y, Wakui H, Kojima J, Shimizu K, Numata T, Kawaishi M. Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. Am J Physiol Lung Cell Mol Physiol. 2013;305(10):L737–46.

    Article  CAS  PubMed  Google Scholar 

  8. Tsuji T, Aoshiba K, Nagai A. Alveolar cell senescence exacerbates pulmonary inflammation in patients with chronic obstructive pulmonary disease. Respiration. 2010;80(1):59–70.

    Article  PubMed  Google Scholar 

  9. D'Agostino B, Sullo N, Siniscalco D, De Angelis A, Rossi F. Mesenchymal stem cell therapy for the treatment of chronic obstructive pulmonary disease. Expert Opin Biol Ther. 2010;10(5):681–7.

    Article  CAS  PubMed  Google Scholar 

  10. Stevenson CS, et al. Comprehensive gene expression profiling of rat lung reveals distinct acute and chronic responses to cigarette smoke inhalation. Am J Physiol Lung Cell Mol Physiol. 2007;293(5):L1183–93. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17720875

    Article  CAS  PubMed  Google Scholar 

  11. Stevenson CS, Docx C, Webster R, Battram C, Hynx D, Giddings J, Cooper PR, Chakravarty P, Rahman I, Marwick JA, Kirkham PA. Comprehensive gene expression profiling of rat lung reveals distinct acute and chronic responses to cigarette smoke inhalation. Am J Physiol Lung Cell Mol Physiol. 2007;293(5):L1183–93.

    Article  CAS  PubMed  Google Scholar 

  12. Mortaz E, Henricks PAJ, Kraneveld AD, Givi ME, Garssen J, Folkerts G. Cigarette smoke induces the release of CXCL-8 from human bronchial epithelial cells via TLRs and induction of the inflammasome. Biochim Biophys Acta. 2011;1812(9):1104–10.

    Article  CAS  PubMed  Google Scholar 

  13. Quint JK, Wedzicha JA. The neutrophil in chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2007;119(5):1065–71.

    Article  CAS  PubMed  Google Scholar 

  14. Angelis N, Porpodis K, Zarogoulidis P, Spyratos D, Kioumis I, Papaiwannou A, Pitsiou G, Tsakiridis K, Mpakas A, Arikas S, Tsiouda T. Airway inflammation in chronic obstructive pulmonary disease. J Thorac Dis. 2014;6(Suppl 1):S167.

    PubMed  PubMed Central  Google Scholar 

  15. Majo J, Ghezzo H, Cosio MG. Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema. Eur Respir J. 2001;17(5):946–53.

    Article  CAS  PubMed  Google Scholar 

  16. Tsoumakidou M, Demedts IK, Brusselle GG, Jeffery PK. Dendritic cells in chronic obstructive pulmonary disease: new players in an old game. Am J Respir Crit Care Med. 2008;177(11):1180–6.

    Article  CAS  PubMed  Google Scholar 

  17. Lapperre TS, Postma DS, Gosman MM, Snoeck-Stroband JB, ten Hacken NH, Hiemstra PS, Timens W, Sterk PJ, Mauad T. Relation between duration of smoking cessation and bronchial inflammation in COPD. Airway Pathol COPD Smok Cessat Pharmacol Treat Interv. 2006;61(2):73.

    Google Scholar 

  18. Hansen MJ, Chan SPJ, Langenbach SY, Dousha LF, Jones JE, Yatmaz S, Seow HJ, Vlahos R, Anderson GP, Bozinovski S. IL-17A and serum amyloid A are elevated in a cigarette smoke cessation model associated with the persistence of pigmented macrophages, neutrophils and activated NK cells. PLoS One. 2014;9(11):e113180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zuo L, He F, Sergakis GG, Koozehchian MS, Stimpfl JN, Rong Y, Diaz PT, Best TM. Interrelated role of cigarette smoking, oxidative stress, and immune response in COPD and corresponding treatments. Am J Physiol Lung Cell Mol Physiol. 2014;307(3):L205–18.

    Article  CAS  PubMed  Google Scholar 

  20. Grant CR, Liberal R, Mieli-Vergani G, Vergani D, Longhi MS. Regulatory T-cells in autoimmune diseases: challenges, controversies and—yet—unanswered questions. Autoimmun Rev. 2015;14(2):105–16.

    Article  CAS  PubMed  Google Scholar 

  21. Lee SH, Goswami S, Grudo A, Li-zhen S, Bandi V, Goodnight-White S, Green L, Hacken-Bitar J, Huh J, Bakaeen F, Coxson HO. Antielastin autoimmunity in tobacco smoking-induced emphysema. Nat Med. 2007;13(5):567.

    Article  CAS  PubMed  Google Scholar 

  22. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965;37(3):614–36.

    Article  CAS  PubMed  Google Scholar 

  23. Kirkland JL, Tchkonia T, Zhu Y, Niedernhofer LJ, Robbins PD. The clinical potential of senolytic drugs. J Am Geriatr Soc. 2017;65(10):2297–301.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, Kleijer WJ, DiMaio D, Hwang ES. Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell. 2006;5(2):187–95.

    Article  CAS  PubMed  Google Scholar 

  25. Ahmad T, Sundar IK, Lerner CA, Gerloff J, Tormos AM, Yao H, Rahman I. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: implications for chronic obstructive pulmonary disease. FASEB J. 2015;29(7):2912–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coates SS, Lehnert BE, Sharma S, Kindell SM, Gary RK. Beryllium induces premature senescence in human fibroblasts. J Pharamacol Exp Ther. 2007;322(1):70–9.

    Article  CAS  Google Scholar 

  27. Ross HH, Levkoff LH, Marshall GP, Caldeira M, Steindler DA, Reynolds BA, Laywell ED. Bromodeoxyuridine induces senescence in neural stem and progenitor cells. Stem Cells. 2008;26(12):3218–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun Y, Hu X, Hu G, Xu C, Jiang H. Curcumin attenuates hydrogen peroxide-induced premature senescence via the activation of SIRT1 in human umbilical vein endothelial cells. Biol Pharm Bull. 2015;38(8):1134–41.

    Article  CAS  PubMed  Google Scholar 

  29. Campisi J, di Fagagna FDA. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8(9):729.

    Article  CAS  PubMed  Google Scholar 

  30. Lujambio A. To clear, or not to clear (senescent cells)? That is the question. Bioessays. 2016;38(S1):S56–64.

    Article  PubMed  Google Scholar 

  31. Waldman T, Kinzler KW, Vogelstein B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 1995;55(22):5187–90.

    CAS  PubMed  Google Scholar 

  32. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16 INK4a. Cell. 1997;88(5):593–602.

    Article  CAS  PubMed  Google Scholar 

  33. Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, Newman J, Reczek EE, Weissleder R, Jacks T. Restoration of p53 function leads to tumour regression in vivo. Nature. 2007;445(7128):661–5.

    Article  CAS  PubMed  Google Scholar 

  34. Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci. 2001;98(21):12072–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6(12):e301.

    Article  PubMed Central  CAS  Google Scholar 

  36. Karrasch S, Holz O, Jörres RA. Aging and induced senescence as factors in the pathogenesis of lung emphysema. Respir Med. 2008;102(9):1215–30.

    Article  PubMed  Google Scholar 

  37. Tsuji T, Aoshiba K, Nagai A. Alveolar cell senescence in patients with pulmonary emphysema. Am J Respir Crit Care Med. 2006;174(8):886–93.

    Article  CAS  PubMed  Google Scholar 

  38. Hara H, Araya J, Takasaka N, Fujii S, Kojima J, Yumino Y, Shimizu K, Ishikawa T, Numata T, Kawaishi M, Saito K. Involvement of creatine kinase b in cigarette smoke–induced bronchial epithelial cell senescence. Am J Respir Cell Mol Biol. 2012;46(3):306–12.

    Article  CAS  PubMed  Google Scholar 

  39. Rajendrasozhan S, Yang SR, Kinnula VL, Rahman I. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;177(8):861–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yao H, Chung S, Hwang JW, Rajendrasozhan S, Sundar IK, Dean DA, McBurney MW, Guarente L, Gu W, Rönty M, Kinnula VL. SIRT1 protects against emphysema via FOXO3-mediated reduction of premature senescence in mice. J Clin Invest. 2012;122(6):2032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ikeno Y, Orihuela C, Van Remmen H. Inflammation in aging and age-related disease. Pathobiol Aging Age Relat Dis. 2011;1(1):14729.

    Article  Google Scholar 

  42. Serasanambati M, Chilakapati SR. Function of nuclear factor kappa B (NF-kB) in human diseases-a review. S Indian J Biol Sci. 2016;2(4):368–87.

    Google Scholar 

  43. Jurk D, et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun. 2014;2:4172. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24960204

    Article  PubMed  CAS  Google Scholar 

  44. Jurk D, Wilson C, Passos JF, Oakley F, Correia-Melo C, Greaves L, Saretzki G, Fox C, Lawless C, Anderson R, Hewitt G. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun. 2014;5:4172.

    Article  CAS  Google Scholar 

  45. Kim KS, Kang KW, Seu YB, Baek SH, Kim JR. Interferon-γ induces cellular senescence through p53-dependent DNA damage signaling in human endothelial cells. Mech Ageing Dev. 2009;130(3):179–88.

    Article  CAS  PubMed  Google Scholar 

  46. Yamagata K, Suzuki S, Tagami M. Docosahexaenoic acid prevented tumor necrosis factor alpha-induced endothelial dysfunction and senescence. Prostaglandins Leukot Essent Fatty Acids. 2016;104:11–8.

    Article  CAS  PubMed  Google Scholar 

  47. Braumüller H, Wieder T, Brenner E, Aßmann S, Hahn M, Alkhaled M, Schilbach K, Essmann F, Kneilling M, Griessinger C, Ranta F. T-helper-1-cell cytokines drive cancer into senescence. Nature. 2013;494(7437):361.

    Article  PubMed  CAS  Google Scholar 

  48. Xu M, Tchkonia T, Ding H, Ogrodnik M, Lubbers ER, Pirtskhalava T, White TA, Johnson KO, Stout MB, Mezera V, Giorgadze N. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc Natl Acad Sci. 2015;112(46):E6301–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aoshiba K, Nagai A. Chronic lung inflammation in aging mice. FEBS Lett. 2007;581(81):3512–6.

    Article  CAS  PubMed  Google Scholar 

  50. Amsellem V, Gary-Bobo G, Marcos E, Maitre B, Chaar V, Validire P, Stern JB, Noureddine H, Sapin E, Rideau D, Hue S. Telomere dysfunction causes sustained inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;184(12):1358–66.

    Article  CAS  PubMed  Google Scholar 

  51. Godtfredsen NS, et al. Risk of hospital admission for COPD following smoking cessation and reduction: a Danish population study. Thorax. 2002;57(11):967–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kanner RE, et al. Effects of randomized assignment to a smoking cessation intervention and changes in smoking habits on respiratory symptoms in smokers with early chronic obstructive pulmonary disease: the Lung Health Study. Am J Med. 1999;106(4):410–6.

    Article  CAS  PubMed  Google Scholar 

  53. Ejiofor S, Turner AM. Pharmacotherapies for COPD. Clin Med Insights Circ Respir Pulm Med. 2013;7:17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Barnes PJ. Theophylline for COPD. Thorax. 2006;61:742–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nannini L, Cates CJ, Lasserson TJ, Poole P. Combined corticosteroid and long-acting beta-agonist in one inhaler versus placebo for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2004;(3):CD003794.

    Google Scholar 

  56. Culpitt SV, Nightingale JA, Barnes PJ. Effect of fluticasone propionate on induced sputum matrix metalloproteinases and tissue inhibitors of metalloproteinases in patients with COPD. Am J Respir Crit Care Med. 1999;159(3):A812.

    Article  Google Scholar 

  57. Thomson NC, Angus R, Quebe-Fehling E, Brambilla R. Efficacy and tolerability of formoterol in elderly patients with reversible obstructive airways disease. Respir Med. 1998;92(3):562–7.

    Article  CAS  PubMed  Google Scholar 

  58. Lipworth BJ, Clark RA, Dhillon DP, McDevitt DG. Comparison of the effects of prolonged treatment with low and high doses of inhaled terbutaline on beta-adrenoceptor responsiveness in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. 1990;142(2):338–42.

    Article  CAS  PubMed  Google Scholar 

  59. Cazzola M, Imperatore F, Salzillo A, Di Perna F, Calderaro F, Imperatore A, Matera MG. Cardiac effects of formoterol and salmeterol in patients suffering from COPD with preexisting cardiac arrhythmias and hypoxemia. Chest. 1998;114(2):411–5.

    Article  CAS  PubMed  Google Scholar 

  60. Barnes PJ. Theophylline in chronic obstructive pulmonary disease: new horizons. Proc Am Thorac Soc. 2005;2(4):334–9.

    Article  CAS  PubMed  Google Scholar 

  61. Tashkin DP, Celli B, Senn S, Burkhart D, Kesten S, Menjoge S, Decramer M. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N Engl J Med. 2008;359(15):1543–54.

    Article  CAS  PubMed  Google Scholar 

  62. Singh S, Loke YK, Furberg CD. Inhaled anticholinergics and risk of major adverse cardiovascular events in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. JAMA. 2008;300(12):1439–50.

    Article  CAS  PubMed  Google Scholar 

  63. Kesten S, Jara M, Wentworth C, Lanes S. Pooled clinical trial analysis of tiotropium safety. Chest J. 2006;130(6):1695–703.

    Article  CAS  Google Scholar 

  64. Dunn LJ, Buhl R, Lassen C, Henley M, Kramer B. Blinded 12-week comparison of once-daily indacaterol and tiotropium in COPD. Chest J. 2010;138(4_MeetingAbstracts):719A–719A.

    Article  Google Scholar 

  65. D’Urzo AD, Rennard SI, Kerwin EM, Mergel V, Leselbaum AR, Caracta CF. Efficacy and safety of fixed-dose combinations of aclidinium bromide/formoterol fumarate: the 24-week, randomized, placebo-controlled AUGMENT COPD study. Respir Res. 2014;15(1):123.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Loke YK, Cavallazzi R, Singh S. Risk of fractures with inhaled corticosteroids in COPD: systematic review and meta-analysis of randomised controlled trials and observational studies. Thorax. 2011;66(8):699–708.

    Article  PubMed  Google Scholar 

  67. Suissa S, Patenaude V, Lapi F, Ernst P. Inhaled corticosteroids in COPD and the risk of serious pneumonia. Thorax. 2013;68(11):1029–36.

    Article  PubMed  Google Scholar 

  68. Dransfield MT, Bourbeau J, Jones PW, Hanania NA, Mahler DA, Vestbo J, Wachtel A, Martinez FJ, Barnhart F, Sanford L, Lettis S. Once-daily inhaled fluticasone furoate and vilanterol versus vilanterol only for prevention of exacerbations of COPD: two replicate double-blind, parallel-group, randomised controlled trials. Lancet Respir Med. 2013;1(3):210–23.

    Article  CAS  PubMed  Google Scholar 

  69. Pauwels RA, Löfdahl CG, Laitinen LA, Schouten JP, Postma DS, Pride NB, Ohlsson SV. Long-term treatment with inhaled budesonide in persons with mild chronic obstructive pulmonary disease who continue smoking. N Engl J Med. 1999;340(25):1948–53.

    Article  CAS  PubMed  Google Scholar 

  70. Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, Palmer AK, Ikeno Y, Hubbard GB, Lenburg M, O'hara SP. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015;14(4):644–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lehmann M, Korfei M, Mutze K, Klee S, Skronska-Wasek W, Alsafadi HN, Ota C, Costa R, Schiller HB, Lindner M, Wagner DE. Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo. Eur Respir J. 2017;50(2):1602367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Fuhrmann-Stroissnigg H, Ling YY, Zhao J, McGowan SJ, Zhu Y, Brooks RW, Grassi D, Gregg SQ, Stripay JL, Dorronsoro A, Corbo L. Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun. 2017;8:422.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB, Pirtskhalava T, Giorgadze N, Johnson KO, Giles CB, Wren JD. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell. 2016;15(3):428–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhu Y, Doornebal EJ, Pirtskhalava T, Giorgadze N, Wentworth M, Fuhrmann-Stroissnigg H, Niedernhofer LJ, Robbins PD, Tchkonia T, Kirkland JL. New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging (Albany NY). 2017;9(3):955.

    Article  Google Scholar 

  75. Aguilera DG, Tsimberidou AM. Dasatinib in chronic myeloid leukemia: a review. Ther Clin Risk Manag. 2009;5:281.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Niu G, Li Z, Cao Q, Chen X. Monitoring therapeutic response of human ovarian cancer to 17-DMAG by noninvasive PET imaging with 64Cu-DOTA-trastuzumab. Eur J Nucl Med Mol Imaging. 2009;36(9):1510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rudin CM, Hann CL, Garon EB, De Oliveira MR, Bonomi PD, Camidge DR, Chu Q, Giaccone G, Khaira D, Ramalingam SS, Ranson MR. Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin Cancer Res. 2012;18(11):3163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jarvinen L, Badri L, Wettlaufer S, Ohtsuka T, Standiford TJ, Toews GB, Pinsky DJ, Peters-Golden M, Lama VN. Lung resident mesenchymal stem cells isolated from human lung allografts inhibit T cell proliferation via a soluble mediator. J Immunol. 2008;181(6):4389–96.

    Article  CAS  PubMed  Google Scholar 

  79. Tabera S, Pérez-Simón JA, Díez-Campelo M, Sánchez-Abarca LI, Blanco B, López A, Benito A, Ocio E, Sánchez-Guijo FM, Cañizo C, San Miguel JF. The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes. Haematologica. 2008;93(9):1301–9.

    Article  CAS  PubMed  Google Scholar 

  80. Vasandan AB, Jahnavi S, Shashank C, Prasad P, Kumar A, Prasanna SJ. Human Mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE2-dependent mechanism. Sci Rep. 2016;6:38308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  CAS  PubMed  Google Scholar 

  82. Zhao W, Wang C, Liu R, Wei C, Duan J, Liu K, Li S, Zou H, Zhao J, Wang L, Qi Y. Effect of TGF-β1 on the migration and recruitment of mesenchymal stem cells after vascular balloon injury: involvement of matrix metalloproteinase-14. Sci Rep. 2016;6:21176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li H, Fan X, Kovi RC, Jo Y, Moquin B, Konz R, Stoicov C, Kurt-Jones E, Grossman SR, Lyle S, Rogers AB. Spontaneous expression of embryonic factors and p53 point mutations in aged mesenchymal stem cells: a model of age-related tumorigenesis in mice. Cancer Res. 2007;67(22):10889–98.

    Article  CAS  PubMed  Google Scholar 

  84. Breitbach M, Bostani T, Roell W, Xia Y, Dewald O, Nygren JM, Fries JW, Tiemann K, Bohlen H, Hescheler J, Welz A. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood. 2007;110(4):1362–9.

    Article  CAS  PubMed  Google Scholar 

  85. Mousavinejad M, Andrews PW, Shoraki EK. Current biosafety considerations in stem cell therapy. Cell J (Yakhteh). 2016;18(2):281.

    Google Scholar 

  86. van Haaften T, Byrne R, Bonnet S, Rochefort GY, Akabutu J, Bouchentouf M, Rey-Parra GJ, Galipeau J, Haromy A, Eaton F, Chen M. Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med. 2009;180(11):1131–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Antunes MA, Abreu SC, Cruz FF, Teixeira AC, Lopes-Pacheco M, Bandeira E, Olsen PC, Diaz BL, Takyia CM, Freitas IP, Rocha NN. Effects of different mesenchymal stromal cell sources and delivery routes in experimental emphysema. Respir Res. 2014;15(1):118.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Liu X, Fang Q, Kim H. Preclinical studies of mesenchymal stem cell (MSC) administration in chronic obstructive pulmonary disease (COPD): a systematic review and meta-analysis. PLoS One. 2016;11(6):e0157099.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Cerrada A, de la Torre P, Grande J, Haller T, Flores AI, Pérez-Gil J. Human decidua-derived mesenchymal stem cells differentiate into functional alveolar type II-like cells that synthesize and secrete pulmonary surfactant complexes. PLoS One. 2014;9(10):e110195.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Furuya N, Takenaga M, Ohta Y, Tokura Y, Hamaguchi A, Sakamaki A, Kida H, Handa H, Nishine H, Mineshita M, Miyazawa T. Cell therapy with adipose tissue-derived stem/stromal cells for elastase-induced pulmonary emphysema in rats. Regen Med. 2012;7(4):503–12.

    Article  CAS  PubMed  Google Scholar 

  91. Weiss DJ, Casaburi R, Flannery R, LeRoux-Williams M, Tashkin DP. A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest J. 2013;143(6):1590–8.

    Article  CAS  Google Scholar 

  92. Stolk J, Broekman W, Mauad T, Zwaginga JJ, Roelofs H, Fibbe WE, Oostendorp J, Bajema I, Versteegh MIM, Taube C, Hiemstra PS. A phase I study for intravenous autologous mesenchymal stromal cell administration to patients with severe emphysema. QJM. 2016;109(5):331–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cai B, et al. Bone marrow-derived mesenchymal stem cells protected rat cardiomyocytes from premature senescence. Int J Cardiol. 2012;154(2):180–2.

    Article  PubMed  Google Scholar 

  94. Zhang M, et al. Bone marrow mesenchymal stem cell transplantation retards the natural senescence of rat hearts. Stem Cells Transl Med. 2015;4(5):494–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xie C, Jin J, Lv X, Tao J, Wang R, Miao D. Anti-aging effect of transplanted amniotic membrane mesenchymal stem cells in a premature aging model of Bmi-1 deficiency. Sci Rep. 2015;5:13975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ludwig AK, Giebel B. Exosomes: small vesicles participating in intercellular communication. Int J Biochem Cell Biol. 2012;44(1):11–5.

    Article  CAS  PubMed  Google Scholar 

  97. Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells. Int J Mol Sci. 2014;15(3):4142–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen TS, Arslan F, Yin Y, Tan SS, Lai RC, Choo ABH, Padmanabhan J, Lee CN, de Kleijn DP, Lim SK. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J Transl Med. 2011;9(1):47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, Konstantinou G, Sdrimas K, Fernandez-gonzalez A, Kourembanas S. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation. 2012;126(22):2601–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Khatri M, Richardson LA, Meulia T. Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model. Stem Cell Res Ther. 2018;9(1):17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Zhu YG, Feng XM, Abbott J, Fang XH, Hao Q, Monsel A, Qu JM, Matthay MA, Lee JW. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells. 2014;32(1):116–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Dong L, Pu Y, Zhang L, Qi Q, Xu L, Li W, Wei C, Wang X, Zhou S, Zhu J, Wang X. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles promote lung adenocarcinoma growth by transferring miR-410. Cell Death Dis. 2018;9(2):218.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Liu T, Zhu K, Ke C, Yang S, Yang F, Li Z, Zhang Z. Mesenchymal stem cells inhibited development of lung cancer induced by chemical carcinogens in a rat model. Am J Transl Res. 2017;9(6):2891.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Del Fattore A, Luciano R, Saracino R, Battafarano G, Rizzo C, Pascucci L, Alessandri G, Pessina A, Perrotta A, Fierabracci A, Muraca M. Differential effects of extracellular vesicles secreted by mesenchymal stem cells from different sources on glioblastoma cells. Expert Opin Biol Ther. 2015;15(4):495–504.

    Article  PubMed  CAS  Google Scholar 

  105. Tofiño-Vian M, Guillén MI, del Caz P, Dolores M, Castejón MA, Alcaraz MJ. Extracellular vesicles from adipose-derived mesenchymal stem cells downregulate senescence features in osteoarthritic osteoblasts. Oxid Med Cell Longev. 2017;2017:7197598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8(4):315–317.

    Article  CAS  PubMed  Google Scholar 

  107. Bonnaure G, Gervais-St-Amour C, Néron S. Bone marrow mesenchymal stem cells enhance the differentiation of human switched memory B Lymphocytes into plasma cells in serum-free medium. J Immunol Res. 2016:1–18.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badrul Hisham Yahaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ridzuan, N., Widera, D., Yahaya, B.H. (2019). Secretome of Mesenchymal Stem Cells and its Impact on Chronic Obstructive Pulmonary Disease. In: Pham, P. (eds) Stem Cell Transplantation for Autoimmune Diseases and Inflammation. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-23421-8_8

Download citation

Publish with us

Policies and ethics