Skip to main content

Liquid Biopsy Diagnosis of CNS Metastases

  • Chapter
  • First Online:
Central Nervous System Metastases

Abstract

The application of liquid biopsy approaches to diagnose cancer and to monitor treatment response has rapidly grown in the last 5 years. The liquid biopsy analysis provides an opportunity to obtain complementary molecular information from different bodily fluids (e.g., blood, urine, cerebrospinal fluid) that may allow for improved management of cancer patients. Apart from cytological and biochemical analysis of cerebrospinal fluid (CSF), the use of liquid biopsy as a diagnostic tool for central nervous system (CNS) metastases is still in its early stage. Identification and more extensive characterization of tumor cells and proteins, but also of circulating tumor DNA (ctDNA) and different forms of RNA in CSF, is increasingly pursued in order to improve the diagnosis and management of patients with CNS metastases. Furthermore, the utility of liquid biopsies for monitoring treatment responses of patients with CNS metastases is beginning to be explored. Although several challenges remain, current technological progress in assay development will allow to tackle limitations imposed by lack of standardized and validated methods for liquid biopsy-based diagnostics of CNS metastases. Inclusion of liquid biopsies in the design of longitudinal cohort studies with combined analysis of various liquid biopsy biosources is expected to advance the discovery of reliable molecular biomarkers for prediction and early detection of CNS metastases. As the result, novel treatment modalities may become available for patients at high risk of CNS metastases, preventing their future occurrence and thereby improving patient outcomes.

Mafalda Antunes Ferreira and Silvia D’Ambrosi are co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BCAAs:

Branched-chain amino acids

cfDNA:

Cell-free DNA

cfRNA:

Cell-free RNA

circRNA:

Circular RNA

CNAs:

Circulating nucleic acids

CNS:

Central nervous system

CNV:

Copy number variation

CPs:

Circulating proteins

CSF:

Cerebrospinal fluid

CTC:

Circulating tumor cell

ctDNA:

Circulating tumor-derived DNA

CUP:

Carcinoma of unknown primary

ddPCR:

Digital droplet PCR

dsDNA:

Double-stranded DNA

EGFR:

Epidermal growth factor receptor

EMA:

European Medicines Agency

EMT:

Epithelial to mesenchymal transition

EpCAM:

Epithelial cell adhesion molecule

ESMO:

European Society of Medical Oncology

EVs:

Extracellular vesicles

FC:

Flow cytometry

FDA:

US Food and Drug Administration

FFPE:

Formalin-fixed paraffin-embedded

HER2:

Human epidermal growth factor receptor

IVD:

Diagnostic medical device

LDH:

Lactate dehydrogenases

LM:

Leptomeningeal metastases

lncRNA:

Long non-coding RNA

LOH:

Loss of heterozygosity

miRNA:

Micro-RNA

mRNA:

Messenger RNA

NGS:

Next-generation sequencing

NSCLC:

Non-small cell lung cancer

PCR:

Polymerase chain reaction

PPV:

Positive predictive value

PSO:

Particle swarm optimization

ssDNA:

Single-stranded DNA

TEPs:

Tumor-educated platelets

TME:

Tumor microenvironment

WES:

Whole-exome sequencing

WGS:

Whole-genome sequencing

References

  1. Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol. 2004;22(14):2865–72.

    Article  PubMed  Google Scholar 

  2. Aragon-Ching JB, Zujewski JA. CNS metastasis: an old problem in a new guise. Clin Cancer Res. 2007;13(6):1644–7.

    Article  CAS  PubMed  Google Scholar 

  3. Nayak L, Lee EQ, Wen PY. Epidemiology of brain metastases. Curr Oncol Rep. 2012;14:48.

    Article  PubMed  Google Scholar 

  4. Soffietti R, Cornu P, Delattre JY, Grant R, Graus F, Grisold W, et al. EFNS guidelines on diagnosis and treatment of brain metastases: report of an EFNS Task Force. Eur J Neurol. 2006;13:674.

    Article  CAS  PubMed  Google Scholar 

  5. Chang EL, Lo SS. Diagnosis and management of central nervous system metastases from breast cancer. Oncologist. 2003;8:398–410.

    Article  PubMed  Google Scholar 

  6. Eichler AF, Loeffler JS. Multidisciplinary management of brain metastases. Oncologist. 2007;12:884.

    Article  CAS  PubMed  Google Scholar 

  7. Fink K, Fink J. Imaging of brain metastases. Surg Neurol Int. 2013;4(5):209.

    Article  Google Scholar 

  8. Lonjaret L, Guyonnet M, Berard E, Vironneau M, Peres F, Sacrista S, et al. Postoperative complications after craniotomy for brain tumor surgery. Anaesth Crit Care Pain Med. 2017;36:213.

    Article  PubMed  Google Scholar 

  9. Nevel KS, Wilcox JA, Robell LJ, Umemura Y. The utility of liquid biopsy in central nervous system malignancies. Curr Oncol Rep. 2018;20(8):60.

    Article  PubMed  CAS  Google Scholar 

  10. Yu M, Stott S, Toner M, Maheswaran S, Haber DA. Circulating tumor cells: approaches to isolation and characterization. J Cell Biol United States. 2011;192(3):373–82.

    Article  CAS  Google Scholar 

  11. Ashworth TR. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J. 1869;14:146–9.

    Google Scholar 

  12. Hou JM, Krebs MG, Lancashire L, Sloane R, Backen A, Swain RK, et al. Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J Clin Oncol. 2012;30(5):525–32.

    Article  PubMed  Google Scholar 

  13. Krebs MG, Metcalf RL, Carter L, Brady G, Blackhall FH, Dive C. Molecular analysis of circulating tumour cells—biology and biomarkers. Nat Rev Clin Oncol. 2014;11(3):129–44.

    Article  CAS  PubMed  Google Scholar 

  14. Umer M, Vaidyanathan R, Nguyen NT, Shiddiky MJA. Circulating tumor microemboli: progress in molecular understanding and enrichment technologies. Biotechnol Adv. 2018;36(4):1367–89.

    Article  CAS  PubMed  Google Scholar 

  15. Yu M, Stott S, Toner M, Maheswaran S, Haber DA. Circulating tumor cells: approaches to isolation and characterization. J Cell Biol. 2011;192(3):373–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alix-Panabières C, Pantel K. Challenges in circulating tumour cell research. Nat Rev Cancer. 2014;14(9):623–31.

    Article  PubMed  CAS  Google Scholar 

  17. Traver S, Assou S, Scalici E, Haouzi D, Al-Edani T, Belloc S, et al. Cell-free nucleic acids as non-invasive biomarkers of gynecological cancers, ovarian, endometrial and obstetric disorders and fetal aneuploidy. Hum Reprod Update. 2014;20(6):905–23.

    Article  CAS  PubMed  Google Scholar 

  18. Alix-Panabières C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov. 2016;6(5):479–91.

    Article  PubMed  CAS  Google Scholar 

  19. Lo YMD, Zhang J, Leung TN, Lau TK, Chang AMZ, Hjelm NM. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet. 1999;64(1):218–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14(9):985–90.

    Article  CAS  PubMed  Google Scholar 

  21. Murtaza M, Dawson SJ, Pogrebniak K, Rueda OM, Provenzano E, Grant J, et al. Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer. Nat Commun. 2015;6:1–6.

    Article  CAS  Google Scholar 

  22. Warren JD, Xiong W, Bunker AM, Vaughn CP, Furtado LV, Roberts WL, et al. Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. BMC Med. 2011;9(1):133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Leighl NB, Rekhtman N, Biermann WA, Huang J, Mino-Kenudson M, Ramalingam SS, et al. Molecular testing for selection of patients with lung cancer for epidermal growth factor receptor and anaplastic lymphoma kinase tyrosine kinase inhibitors: American Society of Clinical Oncology Endorsement of the College of American Pathologists/Internat. J Clin Oncol. 2014;32(32):3673–9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sacher AG, Paweletz C, Dahlberg SE, Alden RS, O’Connell A, Feeney N, et al. Prospective validation of rapid plasma genotyping for the detection of EGFR and KRAS mutations in advanced lung cancer. JAMA Oncol. 2016;2(8):1014.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mouliere F, Chandrananda D, Piskorz AM, Moore EK, Morris J, Ahlborn LB, et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med. 2018;10:eaat4921.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kadam SK, Farmen M, Brandt JT. Quantitative measurement of cell-free plasma DNA and applications for detecting tumor genetic variation and promoter methylation in a clinical setting. J Mol Diagn. 2012;14(4):346–56.

    Article  CAS  PubMed  Google Scholar 

  27. Shen SY, Singhania R, Fehringer G, Chakravarthy A, Roehrl MHA, Chadwick D, et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature. 2018;563(7732):579–83.

    Article  CAS  PubMed  Google Scholar 

  28. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci. 2011;108:5003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Heitzer E, Haque IS, Roberts CES, Speicher MR. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet. 2019;20(2):71–88.

    Article  CAS  PubMed  Google Scholar 

  30. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997–1006.

    Article  CAS  PubMed  Google Scholar 

  31. Montani F, Bianchi F. Circulating cancer biomarkers: the macro-revolution of the micro-RNA. EBioMedicine. 2016;5:4–6.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 2009;19(2):43–51.

    Article  CAS  PubMed  Google Scholar 

  33. Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2(1). https://doi.org/10.3402/jev.v2i0.20360.

    Article  CAS  Google Scholar 

  34. Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ. Extracellular vesicles in cancer—implications for future improvements in cancer care. Nat Rev Clin Oncol. 2018;15(10):617–38.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang H, Freitas D, Kim HS, Fabijanic K, Li Z, Chen H, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol. 2018;20:332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015;25(8):981–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hoshino A, Costa-Silva B, Shen T-L, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527(7578):329–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Best MG, Wesseling P, Wurdinger T. Tumor-educated platelets as a noninvasive biomarker source for cancer detection and progression monitoring. Cancer Res. 2018;78(13):3407–12.

    CAS  PubMed  Google Scholar 

  39. Schwertz H, Tolley ND, Foulks JM, Denis MM, Risenmay BW, Buerke M, et al. Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenecity of human platelets. J Exp Med. 2006;203(11):2433–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alhasan AA, Izuogu OG, Al-Balool HH, Steyn JS, Evans A, Colzani M, et al. Circular RNA enrichment in platelets is a signature of transcriptome degradation. Blood. 2016;127(9):e1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Best MG, Sol N, Kooi I, Tannous J, Westerman BA, Rustenburg F, et al. RNA-Seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell. 2015;28(5):666–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Best MG, Sol N, In ‘t Veld SGJG, Vancura A, Muller M, Niemeijer ALN, et al. Swarm intelligence-enhanced detection of non-small-cell lung cancer using tumor-educated platelets. Cancer Cell. 2017;32(2):238–252.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tjon-Kon-Fat LA, Lundholm M, Schröder M, Wurdinger T, Thellenberg-Karlsson C, Widmark A, et al. Platelets harbor prostate cancer biomarkers and the ability to predict therapeutic response to abiraterone in castration resistant patients. Prostate. 2018;78:48.

    Article  CAS  PubMed  Google Scholar 

  44. Brennan DJ, O’Connor DP, Rexhepaj E, Ponten F, Gallagher WM. Antibody-based proteomics: fast-tracking molecular diagnostics in oncology. Nat Rev Cancer. 2010 Sep;10(9):605–17.

    Article  CAS  PubMed  Google Scholar 

  45. Neagu M, Constantin C, Tanase C, Boda D. Patented biomarker panels in early detection of cancer. Recent Patents Biomarkers. 2011;1(1):10–24.

    CAS  Google Scholar 

  46. Vlahou A. Network views for personalized medicine. Proteomics Clin Appl. 2013;7(5–6):384–7.

    Article  CAS  PubMed  Google Scholar 

  47. Frantzi M, Bhat A, Latosinska A. Clinical proteomic biomarkers: relevant issues on study design & technical considerations in biomarker development. Clin Transl Med. 2014;3(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Füzéry AK, Levin J, Chan MM, Chan DW. Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin Proteomics. 2013;10(1):13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature. 2016;537(7620):347–55.

    Article  CAS  PubMed  Google Scholar 

  50. Crutchfield CA, Thomas SN, Sokoll LJ, Chan DW. Advances in mass spectrometry-based clinical biomarker discovery. Clin Proteomics. 2016;13(1):1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Mayers JR, Wu C, Clish CB, Kraft P, Torrence ME, Fiske BP, et al. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat Med. 2014;20(10):1193–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mayers JR, Torrence ME, Danai LV, Papagiannakopoulos T, Davidson SM, Bauer MR, et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science. 2016;353(6304):1161–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pentsova EI, Shah RH, Tang J, Boire A, You D, Briggs S, et al. Evaluating cancer of the central nervous system through next-generation sequencing of cerebrospinal fluid. J Clin Oncol. 2016;34:2404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. De Mattos-Arruda L, Mayor R, Ng CKY, Weigelt B, Martínez-Ricarte F, Torrejon D, et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat Commun. 2015;6:1–6.

    Google Scholar 

  55. Shalaby T, Achini F, Grotzer MA. Targeting cerebrospinal fluid for discovery of brain cancer biomarkers. J Cancer Metastasis Treat. 2016;2(5):176.

    Article  CAS  Google Scholar 

  56. Le Rhun E, Weller M, Brandsma D, Van den Bent M, de Azambuja E, Henriksson R, et al. EANO–ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up of patients with leptomeningeal metastasis from solid tumours. Ann Oncol. 2017;28(Suppl 4):iv84–99.

    Article  PubMed  Google Scholar 

  57. Brandsma D, Voest EE, De Jager W, Bonfrer H, Algra A, Boogerd W, et al. CSF protein profiling using multiplex Immuno-assay: a potential new diagnostic tool for leptomeningeal metastases. J Neurol. 2006;253(9):1177–84.

    Article  CAS  PubMed  Google Scholar 

  58. Milojkovic Kerklaan B, Pluim D, Bol M, Hofland I, Westerga J, Van Tinteren H, et al. EpCAM-based flow cytometry in cerebrospinal fluid greatly improves diagnostic accuracy of leptomeningeal metastases from epithelial tumors. Neuro-Oncology. 2016;18(6):855–62.

    Article  PubMed  CAS  Google Scholar 

  59. Chamberlain MC, Glantz M, Groves MD, Wilson WH. Diagnostic tools for neoplastic meningitis: detecting disease, identifying patient risk, and determining benefit of treatment. Semin Oncol. 2009;36:S35.

    Article  PubMed  Google Scholar 

  60. Chamberlain M, Soffietti R, Raizer J, Rudà R, Brandsma D, Boogerd W, et al. Leptomeningeal metastasis: a response assessment in neuro-oncology critical review of endpoints and response criteria of published randomized clinical trials. Neuro-Oncology. 2014;16:1176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Drappatz J, Batchelor TT. Leptomeningeal neoplasms. Curr Treat Options Neurol. 2007;9(4):283–93.

    Article  PubMed  Google Scholar 

  62. Gomes HR. Cerebrospinal fluid approach on neuro-oncology. Arq Neuropsiquiatr. 2013;71(9B):677–80.

    Article  PubMed  Google Scholar 

  63. Weston CL, Glantz MJ, Connor JR. Detection of cancer cells in the cerebrospinal fluid: current methods and future directions. Fluids Barriers CNS. 2011;8(1):14.

    Article  PubMed  PubMed Central  Google Scholar 

  64. van Oostenbrugge RJ, Twijnstra A. Presenting features and value of diagnostic procedures in leptomeningeal metastases. Neurology. 1999;53(2):382–5.

    Article  PubMed  Google Scholar 

  65. Pan Z, Yang G, Wang Y, He H, Pang X, Gao Y, et al. Thinprep plus papanicolaou stain method is more sensitive than cytospin-coupled wright giemsa stain method in cerebrospinal fluid cytology for diagnosis of leptomeningeal metastasis from solid tumors. PLoS One. 2015;10(4):1–11.

    Google Scholar 

  66. Chamberlain M, Junck L, Brandsma D, Soffietti R, Rudà R, Raizer J, et al. Leptomeningeal metastases: a RANO proposal for response criteria. Neuro-Oncology. 2017;19(4):484–92.

    PubMed  Google Scholar 

  67. van Bussel MTJ, Pluim D, Bol M, Beijnen JH, Schellens JHM, Brandsma D. EpCAM-based assays for epithelial tumor cell detection in cerebrospinal fluid. J Neurooncol. 2018;137(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  68. Le Rhun E, Massin F, Tu Q, Bonneterre J, Bittencourt MDC, Faure GC. Development of a new method for identification and quantification in cerebrospinal fluid of malignant cells from breast carcinoma leptomeningeal metastasis. BMC Clin Pathol. 2012;12:21.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tu Q, Wu X, Le Rhun E, Blonski M, Wittwer B, Taillandier L, et al. CellSearch® technology applied to the detection and quantification of tumor cells in CSF of patients with lung cancer leptomeningeal metastasis. Lung Cancer. 2015;90:352.

    Article  PubMed  Google Scholar 

  70. Le Rhun E, Tu Q, De Carvalho Bittencourt M, Farre I, Mortier L, Cai H, et al. Detection and quantification of CSF malignant cells by the CellSearch® technology in patients with melanoma leptomeningeal metastasis. Med Oncol. 2013;30(2):538.

    Article  PubMed  CAS  Google Scholar 

  71. Hyun K-A, Koo G-B, Han H, Sohn J, Choi W, Kim S-I, et al. Epithelial-to-mesenchymal transition leads to loss of EpCAM and different physical properties in circulating tumor cells from metastatic breast cancer. Oncotarget. 2016;7(17):24677–87.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Siravegna G, Geuna E, Mussolin B, Crisafulli G, Bartolini A, Galizia D, et al. Genotyping tumour DNA in cerebrospinal fluid and plasma of a HER2-positive breast cancer patient with brain metastases. ESMO Open. 2017;2:e000253.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Li Y, Pan W, Connolly ID, Reddy S, Nagpal S, Quake S, et al. Tumor DNA in cerebral spinal fluid reflects clinical course in a patient with melanoma leptomeningeal brain metastases. J Neuro-Oncol. 2016;128(1):93–100.

    Article  CAS  Google Scholar 

  74. Li YS, Jiang BY, Yang JJ, Zhang XC, Zhang Z, Ye JY, et al. Unique genetic profiles from cerebrospinal fluid cell-free DNA in leptomeningeal metastases of EGFR-mutant non-small-cell lung cancer: a new medium of liquid biopsy. Ann Oncol. 2018;29(4):945–52.

    Article  CAS  PubMed  Google Scholar 

  75. Huang WT, Lu NM, Hsu WY, Chang SE, Atkins A, Mei R, et al. CSF-ctDNA SMSEQ analysis to tailor the treatment of a patient with brain metastases: a case report. Case Rep Oncol. 2018;11(1):68–74.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Yang H, Cai L, Zhang Y, Tan H, Deng Q, Zhao M, et al. Sensitive detection of EGFR mutations in cerebrospinal fluid from lung adenocarcinoma patients with brain metastases. J Mol Diagn. 2014;16(5):558–63.

    Article  CAS  PubMed  Google Scholar 

  77. Sasaki S, Yoshioka Y, Ko R, Katsura Y, Namba Y, Shukuya T, et al. Diagnostic significance of cerebrospinal fluid EGFR mutation analysis for leptomeningeal metastasis in non-small-cell lung cancer patients harboring an active EGFR mutation following gefitinib therapy failure. Respir Investig. 2016;54(1):14–9.

    Article  PubMed  Google Scholar 

  78. Batabyal SK, Ghosh B, Sengupta S, Ghosh SN, Chatterjee R. Cerebrospinal fluid and serum carcinoembryonic antigen in brain tumors. Neoplasma. 2003;50(5):377–9.

    CAS  PubMed  Google Scholar 

  79. Corsini E, Bernardi G, Gaviani P, Silvani A, De Grazia U, Ciusani E, et al. Intrathecal synthesis of tumor markers is a highly sensitive test in the diagnosis of leptomeningeal metastasis from solid cancers. Clin Chem Lab Med. 2009;47(7):874–9.

    Article  CAS  PubMed  Google Scholar 

  80. Groves MD, Hess KR, Puduvalli VK, Colman H, Conrad CA, Gilbert MR, et al. Biomarkers of disease: cerebrospinal fluid vascular endothelial growth factor (VEGF) and stromal cell derived factor (SDF)-1 levels in patients with neoplastic meningitis (NM) due to breast cancer, lung cancer and melanoma. J Neuro-Oncol. 2009;94(2):229–34.

    Article  CAS  Google Scholar 

  81. Ballester LY, Lu G, Zorofchian S, Vantaku V, Putluri V, Yan Y, et al. Analysis of cerebrospinal fluid metabolites in patients with primary or metastatic central nervous system tumors. Acta Neuropathol Commun. 2018;6(1):85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Drusco A, Bottoni A, Lagana’ A, Acunzo M, Fassan M, Cascione L, et al. A differentially expressed set of microRNAs in cerebro-spinal fluid (CSF) can diagnose CNS malignancies. Oncotarget. 2015;6(25):20829.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Teplyuk NM, Mollenhauer B, Gabriely G, Giese A, Kim E, Smolsky M, Kim RY, Saria MG, Pastorino S, Kesari S, Krichevsky AM. MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity. Neuro-Oncology. 2012;14(6):689–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lohr JG, Adalsteinsson VA, Cibulskis K, Choudhury AD, Rosenberg M, Cruz-Gordillo P, et al. Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol. 2014;32:479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Curry WT, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10:1470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shankar GM, Balaj L, Stott SL, Nahed B, Carter BS. Liquid biopsy for brain tumors. Expert Rev Mol Diagn. 2017;17(10):943–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cohen JD, Javed AA, Thoburn C, Wong F, Tie J, Gibbs P, et al. Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. Proc Natl Acad Sci. 2017;114:10202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359(6378):926–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors apologize for not citing all the studies, technologies, and clinical trials on the topic of liquid biopsies and CNS metastases in this chapter. The authors thank L. Salvador for his assistance in drafting the figure included in this chapter. The work of authors M.A.F., S.D., D.K.L., and T.W. is supported by H2020 MSCA ITN ELBA GA#765492, and D.K.L. is a recipient of the Dutch Cancer Foundation grant (KWF2017-10476) and the Cancer Center Amsterdam foundation grant (CCA2017-2-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danijela Koppers-Lalic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Antunes Ferreira, M., D’Ambrosi, S., Würdinger, T., Wesseling, P., Koppers-Lalic, D. (2020). Liquid Biopsy Diagnosis of CNS Metastases. In: Ahluwalia, M., Metellus, P., Soffietti, R. (eds) Central Nervous System Metastases. Springer, Cham. https://doi.org/10.1007/978-3-030-23417-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23417-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23416-4

  • Online ISBN: 978-3-030-23417-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics