Skip to main content

Surgical Resection for Brain Metastases

  • Chapter
  • First Online:
Central Nervous System Metastases

Abstract

Brain metastases are the most common intracranial neoplasms in adults, affecting 150,000–200,000 cancer patients per year in the United States [1, 2]. The most common primary sources of brain metastases are lung cancer, breast cancer, and melanoma, with melanoma most predisposed to metastasize to the brain [3]. Brain metastases traditionally result in poor outcomes and, unfortunately, often indicate the terminal stage of systemic cancer. Brain metastases pose a significant public health issue, as over one million people are diagnosed with cancer each year in the USA (www.cancer.gov/about-cancer/understanding/statistics). In addition to the obvious potential functional burden of brain metastasis to patients, the socioeconomic burden is also profound. A number of studies have demonstrated increased health care utilization and costs for patients after a diagnosis of brain metastasis. In a retrospective review of 132 patients with non-small cell lung cancer, prior to brain metastasis diagnosis, patients had a 6-month healthcare cost of $5983, which increased to over $22,000 after the diagnosis of brain metastasis. This same study found that patient resource utility also substantially increased, with a three-fold increase in outpatient visits and a six-fold increase in inpatient admission [4]. Furthermore, patients with brain metastases missed significantly more workdays, resulting in a salary loss of $2853 per patient over a 6-month period. Similarly, in breast cancer, relative to a matched control cohort, patients with brain metastasis had a mean overall healthcare cost of $99,899 over 12 months compared with $47,719 in patients without metastases [5]. Strategies for the management of brain metastases have developed tremendously over the past decade, including the use of immunotherapy [6, 7] and advancements in radiation techniques [8]. Surgical resection remains a cornerstone in the treatment of brain metastasis. This chapter will focus on the role of surgery in the treatment of patients with metastatic brain disease and discuss current perspectives in the surgical management of this complicated issue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson JD, Young B. Demographics of brain metastasis. Neurosurg Clin N Am. 1996;7(3):337–44.

    Article  CAS  PubMed  Google Scholar 

  2. Shaffrey ME, et al. Brain metastases. Curr Probl Surg. 2004;41(8):665–741.

    Article  PubMed  Google Scholar 

  3. Schouten LJ, et al. Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer. 2002;94(10):2698–705.

    Article  PubMed  Google Scholar 

  4. Guerin A, et al. Brain metastases in patients with ALK+ non-small cell lung cancer: clinical symptoms, treatment patterns and economic burden. J Med Econ. 2015;18(4):312–22.

    Article  PubMed  Google Scholar 

  5. Pelletier EM, et al. Epidemiology and economic burden of brain metastases among patients with primary breast cancer: results from a US claims data analysis. Breast Cancer Res Treat. 2008;108(2):297–305.

    Article  PubMed  Google Scholar 

  6. Amaral T, et al. Immunotherapy plus surgery/radiosurgery is associated with favorable survival in patients with melanoma brain metastasis. Immunotherapy. 2019;11(4):297–309.

    Article  CAS  PubMed  Google Scholar 

  7. Margolin K. Ipilimumab in a Phase II trial of melanoma patients with brain metastases. Oncoimmunology. 2012;1(7):1197–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mahajan A, et al. Post-operative stereotactic radiosurgery versus observation for completely resected brain metastases: a single-centre, randomised, controlled, phase 3 trial. Lancet Oncol. 2017;18:1040–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Patchell RA, et al. A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med. 1990;322(8):494–500.

    Article  CAS  PubMed  Google Scholar 

  10. Vecht CJ, et al. Treatment of single brain metastasis: radiotherapy alone or combined with neurosurgery? Ann Neurol. 1993;33(6):583–90.

    Article  CAS  PubMed  Google Scholar 

  11. Angelov L, et al. Impact of 2-staged stereotactic radiosurgery for treatment of brain metastases >/= 2 cm. J Neurosurg. 2018;129(2):366–82.

    Article  PubMed  Google Scholar 

  12. Petrovich Z, et al. Survival and pattern of failure in brain metastasis treated with stereotactic gamma knife radiosurgery. J Neurosurg. 2002;97(5 Suppl):499–506.

    Article  PubMed  Google Scholar 

  13. Vogelbaum MA, et al. Local control of brain metastases by stereotactic radiosurgery in relation to dose to the tumor margin. J Neurosurg. 2006;104(6):907–12.

    Article  PubMed  Google Scholar 

  14. Ebner D, et al. Stereotactic radiosurgery for large brain metastases. J Clin Neurosci. 2015;22(10):1650–4.

    Article  PubMed  Google Scholar 

  15. Shaw E, et al. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int J Radiat Oncol Biol Phys. 2000;47(2):291–8.

    Article  CAS  PubMed  Google Scholar 

  16. Prabhu RS, et al. Single-fraction stereotactic radiosurgery (SRS) alone versus surgical resection and SRS for large brain metastases: a multi-institutional analysis. Int J Radiat Oncol Biol Phys. 2017;99(2):459–67.

    Article  PubMed  Google Scholar 

  17. Tendulkar RD, et al. RPA classification has prognostic significance for surgically resected single brain metastasis. Int J Radiat Oncol Biol Phys. 2006;66(3):810–7.

    Article  PubMed  Google Scholar 

  18. Lee CH, et al. The role of surgical resection in the management of brain metastasis: a 17-year longitudinal study. Acta Neurochir. 2013;155(3):389–97.

    Article  PubMed  Google Scholar 

  19. Paek SH, et al. Reevaluation of surgery for the treatment of brain metastases: review of 208 patients with single or multiple brain metastases treated at one institution with modern neurosurgical techniques. Neurosurgery. 2005;56(5):1021–34.

    PubMed  Google Scholar 

  20. Sperduto PW, et al. A new prognostic index and comparison to three other indices for patients with brain metastases: an analysis of 1,960 patients in the RTOG database. Int J Radiat Oncol Biol Phys. 2008;70(2):510–4.

    Article  PubMed  Google Scholar 

  21. Sperduto PW, et al. Diagnosis-specific prognostic factors, indexes, and treatment outcomes for patients with newly diagnosed brain metastases: a multi-institutional analysis of 4,259 patients. Int J Radiat Oncol Biol Phys. 2010;77(3):655–61.

    Article  PubMed  Google Scholar 

  22. Schodel P, et al. Surgical resection of brain metastases-impact on neurological outcome. Int J Mol Sci. 2013;14(5):8708–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Patel AJ, et al. Factors influencing the risk of local recurrence after resection of a single brain metastasis. J Neurosurg. 2010;113(2):181–9.

    Article  PubMed  Google Scholar 

  24. Ahn JH, et al. Risk for leptomeningeal seeding after resection for brain metastases: implication of tumor location with mode of resection. J Neurosurg. 2012;116(5):984–93.

    Article  PubMed  Google Scholar 

  25. Suki D, et al. Comparative risk of leptomeningeal disease after resection or stereotactic radiosurgery for solid tumor metastasis to the posterior fossa. J Neurosurg. 2008;108(2):248–57.

    Article  PubMed  Google Scholar 

  26. Patel AJ, et al. Impact of surgical methodology on the complication rate and functional outcome of patients with a single brain metastasis. J Neurosurg. 2015;122(5):1132–43.

    Article  PubMed  Google Scholar 

  27. Hendrix P, et al. Preoperative navigated transcranial magnetic stimulation in patients with motor eloquent lesions with emphasis on metastasis. Clin Anat. 2016;29(7):925–31.

    Article  PubMed  Google Scholar 

  28. Huberfeld G, et al. Preoperative and intraoperative neurophysiological investigations for surgical resections in functional areas. Neurochirurgie. 2017;63(3):142–9.

    Article  CAS  PubMed  Google Scholar 

  29. Sollmann N, et al. Associations between clinical outcome and navigated transcranial magnetic stimulation characteristics in patients with motor-eloquent brain lesions: a combined navigated transcranial magnetic stimulation-diffusion tensor imaging fiber tracking approach. J Neurosurg. 2018;128(3):800–10.

    Article  PubMed  Google Scholar 

  30. Unsgaard G, et al. Ability of navigated 3D ultrasound to delineate gliomas and metastases—comparison of image interpretations with histopathology. Acta Neurochir. 2005;147(12):1259–69; discussion 1269.

    Article  CAS  PubMed  Google Scholar 

  31. Senft C, et al. Intraoperative magnetic resonance imaging in the surgical treatment of cerebral metastases. J Surg Oncol. 2010;101(5):436–41.

    PubMed  Google Scholar 

  32. Tan TC, Black PM. Image-guided craniotomy for cerebral metastases: techniques and outcomes. Neurosurgery. 2007;61(1 Suppl):349–56; discussion 356-7

    PubMed  Google Scholar 

  33. Kellogg RG, Munoz LF. Selective excision of cerebral metastases from the precentral gyrus. Surg Neurol Int. 2013;4:66.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sanmillan JL, et al. Functional approach using intraoperative brain mapping and neurophysiological monitoring for the surgical treatment of brain metastases in the central region. J Neurosurg. 2016;126:1–10.

    Google Scholar 

  35. Kamp MA, et al. Proof of principle: supramarginal resection of cerebral metastases in eloquent brain areas. Acta Neurochir. 2012;154(11):1981–6.

    Article  PubMed  Google Scholar 

  36. Schackert G, et al. Retrospective study of 127 surgically treated patients with multiple brain metastases: indication, prognostic factors, and outcome. Acta Neurochir. 2013;155(3):379–87.

    Article  PubMed  Google Scholar 

  37. Bindal RK, et al. Surgical treatment of multiple brain metastases. J Neurosurg. 1993;79(2):210–6.

    Article  CAS  PubMed  Google Scholar 

  38. Salvati M, et al. Multiple brain metastases: a surgical series and neurosurgical perspective. Neurol Sci. 2018;39(4):671–7.

    Article  PubMed  Google Scholar 

  39. Al-Zabin M, et al. Recurrent brain metastases from lung cancer: the impact of reoperation. Acta Neurochir. 2010;152(11):1887–92.

    Article  PubMed  Google Scholar 

  40. Bindal RK, et al. Reoperation for recurrent metastatic brain tumors. J Neurosurg. 1995;83(4):600–4.

    Article  CAS  PubMed  Google Scholar 

  41. Mensel B, Weigel C, Hosten N. Laser-induced thermotherapy. Recent Results Cancer Res. 2006;167:69–75.

    Article  PubMed  Google Scholar 

  42. Medvid R, et al. Current applications of MRI-guided laser interstitial thermal therapy in the treatment of brain neoplasms and epilepsy: a radiologic and neurosurgical overview. AJNR Am J Neuroradiol. 2015;36(11):1998–2006.

    Article  CAS  PubMed  Google Scholar 

  43. Rahmathulla G, et al. MRI-guided laser interstitial thermal therapy in neuro-oncology: a review of its current clinical applications. Oncology. 2014;87(2):67–82.

    Article  PubMed  Google Scholar 

  44. Ali MA, et al. Stereotactic laser ablation as treatment for brain metastases that recur after stereotactic radiosurgery: a multiinstitutional experience. Neurosurg Focus. 2016;41(4):E11.

    Article  PubMed  Google Scholar 

  45. Carpentier A, et al. Laser thermal therapy: real-time MRI-guided and computer-controlled procedures for metastatic brain tumors. Lasers Surg Med. 2011;43(10):943–50.

    Article  PubMed  Google Scholar 

  46. Rao MS, et al. Magnetic resonance-guided laser ablation improves local control for postradiosurgery recurrence and/or radiation necrosis. Neurosurgery. 2014;74(6):658–67; discussion 667.

    Article  PubMed  Google Scholar 

  47. Torres-Reveron J, et al. Stereotactic laser induced thermotherapy (LITT): a novel treatment for brain lesions regrowing after radiosurgery. J Neurooncol. 2013;113(3):495–503.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank David M. Wildrick, Ph.D., for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Sawaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haider, A.S., Sawaya, R., Ferguson, S.D. (2020). Surgical Resection for Brain Metastases. In: Ahluwalia, M., Metellus, P., Soffietti, R. (eds) Central Nervous System Metastases. Springer, Cham. https://doi.org/10.1007/978-3-030-23417-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23417-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23416-4

  • Online ISBN: 978-3-030-23417-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics