Skip to main content

Imaging of Brain Metastases: Diagnosis and Monitoring

  • Chapter
  • First Online:
Central Nervous System Metastases

Abstract

Brain metastases are the most frequent brain tumors in adults [1] and represent about 25% of brain masses. Among patients with metastatic cancer, 40% will present with brain metastases [2]. These lesions are less frequently symptomatic than expected: only 19% of patients with newly diagnosed brain metastases have neurologic symptoms [3] whereas these lesions dramatically change patients’ prognosis. We will see in this chapter that imaging is central for patients’ care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Posner JB, Chernik NL. Intracranial metastases from systemic cancer. Adv Neurol. 1978;19:579–92.

    CAS  PubMed  Google Scholar 

  2. Patchell RA. The management of brain metastases. Cancer Treat Rev. 2003;29(6):533–40.

    Article  PubMed  Google Scholar 

  3. Füreder LM, Widhalm G, Gatterbauer B, Dieckmann K, Hainfellner JA, Bartsch R, et al. Brain metastases as first manifestation of advanced cancer: exploratory analysis of 459 patients at a tertiary care center. Clin Exp Metastasis. 2018;35(8):727–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Lin JP, Kricheff II, Laguna J, Naidich T. Brain tumors studied by computerized tomography. Adv Neurol. 1976;15:175–99.

    CAS  PubMed  Google Scholar 

  5. Healy ME, Hesselink JR, Press GA, Middleton MS. Increased detection of intracranial metastases with intravenous Gd-DTPA. Radiology. 1987;165(3):619–24.

    Article  CAS  PubMed  Google Scholar 

  6. Sage MR, Wilson AJ. The blood-brain barrier: an important concept in neuroimaging. AJNR Am J Neuroradiol avr. 1994;15(4):601–22.

    CAS  Google Scholar 

  7. Seute T, Leffers P, ten Velde GPM, Twijnstra A. Detection of brain metastases from small cell lung cancer: consequences of changing imaging techniques (CT versus MRI). Cancer. 2008;112(8):1827–34.

    Article  PubMed  Google Scholar 

  8. Pope WB. Brain metastases: neuroimaging. Handb Clin Neurol. 2018;149:89–112.. Elsevier. Disponible sur: https://linkinghub.elsevier.com/retrieve/pii/B9780128111611000074

    Article  PubMed  PubMed Central  Google Scholar 

  9. Escott EJ. A variety of appearances of malignant melanoma in the head: a review. Radiographics. 2001;21(3):625–39.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang W, Ma X-X, Ji Y-M, Kang X-S, Li C-F. Haemorrhage detection in brain metastases of lung cancer patients using magnetic resonance imaging. J Int Med Res. 2009;37(4):1139–44.

    Article  CAS  PubMed  Google Scholar 

  11. Delattre JY, Krol G, Thaler HT, Posner JB. Distribution of brain metastases. Arch Neurol. 1988;45(7):741–4.

    Article  CAS  PubMed  Google Scholar 

  12. Kindt GW. The pattern of location of cerebral metastatic tumors. J Neurosurg. 1964;21:54–7.

    Article  CAS  PubMed  Google Scholar 

  13. Hwang T-L, Close TP, Grego JM, Brannon WL, Gonzales F. Predilection of brain metastasis in gray and white matter junction and vascular border zones. Cancer. 1996;77(8):1551–5.

    Article  CAS  PubMed  Google Scholar 

  14. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161(2):401–7.

    Article  PubMed  Google Scholar 

  15. Hayashida Y, Hirai T, Morishita S, Kitajima M, Murakami R, Korogi Y, et al. Diffusion-weighted imaging of metastatic brain tumors: comparison with histologic type and tumor cellularity. AJNR Am J Neuroradiol. 2006;27(7):1419–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Trattnig S, Ba-Ssalamah A, Noebauer-Huhmann I-M, Barth M, Wolfsberger S, Pinker K, et al. MR contrast agent at high-field MRI (3 Tesla). Top Magn Reson Imaging TMRI. 2003;14(5):365–75.

    Article  PubMed  Google Scholar 

  17. Ba-Ssalamah A, Nöbauer-Huhmann IM, Pinker K, Schibany N, Prokesch R, Mehrain S, et al. Effect of contrast dose and field strength in the magnetic resonance detection of brain metastases. Invest Radiol. 2003;38(7):415–22.

    PubMed  Google Scholar 

  18. Noebauer-Huhmann I-M, Szomolanyi P, Kronnerwetter C, Widhalm G, Weber M, Nemec S, et al. Brain tumours at 7T MRI compared to 3T—contrast effect after half and full standard contrast agent dose: initial results. Eur Radiol. 2015;25(1):106–12.

    Article  PubMed  Google Scholar 

  19. Takeda T, Takeda A, Nagaoka T, Kunieda E, Takemasa K, Watanabe M, et al. Gadolinium-enhanced three-dimensional magnetization-prepared rapid gradient-echo (3D MP-RAGE) imaging is superior to spin-echo imaging in delineating brain metastases. Acta Radiol Stockh Swed 1987. 2008;49(10):1167–73.

    CAS  Google Scholar 

  20. Chappell PM, Pelc NJ, Foo TK, Glover GH, Haros SP, Enzmann DR. Comparison of lesion enhancement on spin-echo and gradient-echo images. AJNR Am J Neuroradiol. 1994;15(1):37–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Reichert M, Morelli JN, Runge VM, Tao A, von Ritschl R, von Ritschl A, et al. Contrast-enhanced 3-dimensional SPACE versus MP-RAGE for the detection of brain metastases: considerations with a 32-channel head coil. Invest Radiol. 2013;48(1):55–60.

    Article  PubMed  Google Scholar 

  22. Rand S, Maravilla KR. Uses and limitations of spoiled gradient-refocused imaging in the evaluation of suspected intracranial tumors. Top Magn Reson Imaging TMRI sept. 1992;4(4):7-16.

    Google Scholar 

  23. Kushnirsky M, Nguyen V, Katz JS, Steinklein J, Rosen L, Warshall C, et al. Time-delayed contrast-enhanced MRI improves detection of brain metastases and apparent treatment volumes. J Neurosurg. 2016;124(2):489–95.

    Article  CAS  PubMed  Google Scholar 

  24. Yuh WT, Tali ET, Nguyen HD, Simonson TM, Mayr NA, Fisher DJ. The effect of contrast dose, imaging time, and lesion size in the MR detection of intracerebral metastasis. AJNR Am J Neuroradiol. 1995;16(2):373–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yuh WT, Fisher DJ, Runge VM, Atlas SW, Harms SE, Maravilla KR, et al. Phase III multicenter trial of high-dose gadoteridol in MR evaluation of brain metastases. AJNR Am J Neuroradiol. 1994;15(6):1037–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Togao O, Hiwatashi A, Yamashita K, Kikuchi K, Yoshiura T, Honda H. Additional MR contrast dosage for radiologists’ diagnostic performance in detecting brain metastases: a systematic observer study at 3 T. Jpn J Radiol. 2014;32(9):537–44.

    Article  PubMed  Google Scholar 

  27. Anzalone N, Essig M, Lee S-K, Dörfler A, Ganslandt O, Combs SE, et al. Optimizing contrast-enhanced magnetic resonance imaging characterization of brain metastases: relevance to stereotactic radiosurgery. Neurosurgery. 2013;72(5):691–701.

    Article  PubMed  Google Scholar 

  28. Fraum TJ, Ludwig DR, Bashir MR, Fowler KJ. Gadolinium-based contrast agents: a comprehensive risk assessment. J Magn Reson Imaging JMRI. 2017;46(2):338–53.

    Article  PubMed  Google Scholar 

  29. Franceschi AM, Moschos SJ, Anders CK, Glaubiger S, Collichio FA, Lee CB, et al. Use of susceptibility-weighted imaging (SWI) in the detection of brain hemorrhagic metastases from breast cancer and melanoma. J Comput Assist Tomogr. 2016;40(5):803–5.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schwartz KM, Erickson BJ, Lucchinetti C. Pattern of T2 hypointensity associated with ring-enhancing brain lesions can help to differentiate pathology. Neuroradiology. 2006;48(3):143–9.

    Article  CAS  PubMed  Google Scholar 

  31. Smirniotopoulos JG, Murphy FM, Rushing EJ, Rees JH, Schroeder JW. Patterns of contrast enhancement in the brain and meninges. Radiogr Rev Publ Radiol Soc N Am Inc. 2007;27(2):525–51.

    Google Scholar 

  32. Toh CH, Wei K-C, Ng S-H, Wan Y-L, Lin C-P, Castillo M. Differentiation of brain abscesses from necrotic glioblastomas and cystic metastatic brain tumors with diffusion tensor imaging. AJNR Am J Neuroradiol. 2011;32(9):1646–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Floriano VH, Torres US, Spotti AR, Ferraz-Filho JRL, Tognola WA. The role of dynamic susceptibility contrast-enhanced perfusion MR imaging in differentiating between infectious and neoplastic focal brain lesions: results from a cohort of 100 consecutive patients. PLoS One. 2013;8(12):e81509.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Gupta RK, Jobanputra KJ, Yadav A. MR spectroscopy in brain infections. Neuroimaging Clin N Am. 2013;23(3):475–98.

    Article  PubMed  Google Scholar 

  35. Masdeu JC, Quinto C, Olivera C, Tenner M, Leslie D, Visintainer P. Open-ring imaging sign: highly specific for atypical brain demyelination. Neurology. 2000;54(7):1427–33.

    Article  CAS  PubMed  Google Scholar 

  36. Rueda-Lopes FC, Hygino da Cruz LC, Doring TM, Gasparetto EL. Diffusion-weighted imaging and demyelinating diseases: new aspects of an old advanced sequence. AJR Am J Roentgenol. 2014;202(1):W34–42.

    Article  PubMed  Google Scholar 

  37. Cai X, Xu J, Xu J, Pan D. Serial magnetic resonance imaging representation in a Baló’s concentric sclerosis. J Neurol Sci. 2015;349(1-2):266–8.

    Article  PubMed  Google Scholar 

  38. Yamasaki F, Kurisu K, Satoh K, Arita K, Sugiyama K, Ohtaki M, et al. Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology. 2005;235(3):985–91.

    Article  PubMed  Google Scholar 

  39. Usinskiene J, Ulyte A, Bjørnerud A, Venius J, Katsaros VK, Rynkeviciene R, et al. Optimal differentiation of high- and low-grade glioma and metastasis: a meta-analysis of perfusion, diffusion, and spectroscopy metrics. Neuroradiology. 2016;58(4):339–50.

    Article  PubMed  Google Scholar 

  40. Liang R, Wang X, Li M, Yang Y, Luo J, Mao Q, et al. Meta-analysis of peritumoural rCBV values derived from dynamic susceptibility contrast imaging in differentiating high-grade gliomas from intracranial metastases. Int J Clin Exp Med. 2014;7(9):2724–9.

    PubMed  PubMed Central  Google Scholar 

  41. Bulakbasi N, Kocaoglu M, Farzaliyev A, Tayfun C, Ucoz T, Somuncu I. Assessment of diagnostic accuracy of perfusion MR imaging in primary and metastatic solitary malignant brain tumors. AJNR Am J Neuroradiol. 2005;26(9):2187–99.

    PubMed  PubMed Central  Google Scholar 

  42. Tsougos I, Svolos P, Kousi E, Fountas K, Theodorou K, Fezoulidis I, et al. Differentiation of glioblastoma multiforme from metastatic brain tumor using proton magnetic resonance spectroscopy, diffusion and perfusion metrics at 3 T. Cancer Imaging Off Publ Int Cancer Imaging Soc. 2012;12:423–36.

    Google Scholar 

  43. Crisi G, Orsingher L, Filice S. Lipid and macromolecules quantitation in differentiating glioblastoma from solitary metastasis: a short-echo time single-voxel magnetic resonance spectroscopy study at 3 T. J Comput Assist Tomogr. 2013;37(2):265–71.

    Article  PubMed  Google Scholar 

  44. Bauer AH, Erly W, Moser FG, Maya M, Nael K. Differentiation of solitary brain metastasis from glioblastoma multiforme: a predictive multiparametric approach using combined MR diffusion and perfusion. Neuroradiology. 2015;57(7):697–703.

    Article  PubMed  Google Scholar 

  45. Debevec M. Management of patients with brain metastases of unknown origin. Neoplasma. 1990;37(5):601–6.

    CAS  PubMed  Google Scholar 

  46. DeAngelis LM, Posner JB. Neurologic complications of cancer, Contemporary neurology series. 2nd ed. Oxford, New York: Oxford University Press; 2008. p. 656.

    Book  Google Scholar 

  47. Quattrocchi CC, Errante Y, Gaudino C, Mallio CA, Giona A, Santini D, et al. Spatial brain distribution of intra-axial metastatic lesions in breast and lung cancer patients. J Neurooncol. 2012;110(1):79–87.

    Article  CAS  PubMed  Google Scholar 

  48. Kyeong S, Cha YJ, Ahn SG, Suh SH, Son EJ, Ahn SJ. Subtypes of breast cancer show different spatial distributions of brain metastases. PLoS One. 2017;12(11):e0188542.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Yeh R-H, Yu J-C, Chu C-H, Ho C-L, Kao H-W, Liao G-S, et al. Distinct MR imaging features of triple-negative breast cancer with brain metastasis. J Neuroimaging Off J Am Soc Neuroimaging. 2015;25(3):474–81.

    Article  Google Scholar 

  50. Kniep HC, Madesta F, Schneider T, Hanning U, Schönfeld MH, Schön G, et al. Radiomics of brain mri: utility in prediction of metastatic tumor type. Radiology. 2019;290(2):479–87.

    Article  PubMed  Google Scholar 

  51. Harrison RA, Nam JY, Weathers S-P, DeMonte F. Intracranial dural, calvarial, and skull base metastases. Handb Clin Neurol. 2018;149:205–25.

    Article  PubMed  Google Scholar 

  52. Beauchesne P. Intrathecal chemotherapy for treatment of leptomeningeal dissemination of metastatic tumours. Lancet Oncol. 2010;11(9):871–9.

    Article  CAS  PubMed  Google Scholar 

  53. Wang N, Bertalan MS, Brastianos PK. Leptomeningeal metastasis from systemic cancer: review and update on management. Cancer. 2018;124(1):21–35.

    Article  PubMed  Google Scholar 

  54. Singh SK, Agris JM, Leeds NE, Ginsberg LE. Intracranial leptomeningeal metastases: comparison of depiction at FLAIR and contrast-enhanced MR imaging. Radiology. 2000;217(1):50–3.

    Article  CAS  PubMed  Google Scholar 

  55. Singh SK, Leeds NE, Ginsberg LE. MR imaging of leptomeningeal metastases: comparison of three sequences. AJNR Am J Neuroradiol. 2002;23(5):817–21.

    PubMed  PubMed Central  Google Scholar 

  56. Ercan N, Gultekin S, Celik H, Tali TE, Oner YA, Erbas G. Diagnostic value of contrast-enhanced fluid-attenuated inversion recovery MR imaging of intracranial metastases. AJNR Am J Neuroradiol. 2004;25(5):761–5.

    PubMed  PubMed Central  Google Scholar 

  57. Graber JJ, Cobbs CS, Olson JJ. Congress of neurological surgeons systematic review and evidence-based guidelines on the use of stereotactic radiosurgery in the treatment of adults with metastatic brain tumors. Neurosurgery. 2019;84:E168–70.. Disponible sur: https://academic.oup.com/neurosurgery/advance-article/doi/10.1093/neuros/nyy543/5281388

    Article  PubMed  Google Scholar 

  58. Zakaria R, Pomschar A, Jenkinson MD, Tonn J-C, Belka C, Ertl-Wagner B, et al. Use of diffusion-weighted MRI to modify radiosurgery planning in brain metastases may reduce local recurrence. J Neurooncol. 2017;131(3):549–54.

    Article  PubMed  Google Scholar 

  59. Berghoff AS, Spanberger T, Ilhan-Mutlu A, Magerle M, Hutterer M, Woehrer A, et al. Preoperative diffusion-weighted imaging of single brain metastases correlates with patient survival times. PLoS One. 2013;8(2):e55464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Spanberger T, Berghoff AS, Dinhof C, Ilhan-Mutlu A, Magerle M, Hutterer M, et al. Extent of peritumoral brain edema correlates with prognosis, tumoral growth pattern, HIF1a expression and angiogenic activity in patients with single brain metastases. Clin Exp Metastasis. 2013;30(4):357–68.

    Article  CAS  PubMed  Google Scholar 

  61. Essig M, Waschkies M, Wenz F, Debus J, Hentrich HR, Knopp MV. Assessment of brain metastases with dynamic susceptibility-weighted contrast-enhanced MR imaging: initial results. Radiology. 2003;228(1):193–9.

    Article  PubMed  Google Scholar 

  62. Chernov M, Hayashi M, Izawa M, Nakaya K, Ono Y, Usukura M, et al. Metabolic characteristics of intracranial metastases, detected by single-voxel proton magnetic resonance spectroscopy, are seemingly not predictive for tumor response to gamma knife radiosurgery. Minim Invasive Neurosurg MIN. 2007;50(4):233–8.

    Article  CAS  PubMed  Google Scholar 

  63. Mellerio C, Charron S, Lion S, Roca P, Kuchcinski G, Legrand L, et al. Perioperative functional neuroimaging of gliomas in eloquent brain areas. Neurochirurgie. 2017;63(3):129–34.

    Article  CAS  PubMed  Google Scholar 

  64. Bizzi A, Blasi V, Falini A, Ferroli P, Cadioli M, Danesi U, et al. Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping. Radiology. 2008;248(2):579–89.

    Article  PubMed  Google Scholar 

  65. Kamp MA, Rapp M, Bühner J, Slotty PJ, Reichelt D, Sadat H, et al. Early postoperative magnet resonance tomography after resection of cerebral metastases. Acta Neurochir. 2015;157(9):1573–80.

    Article  PubMed  Google Scholar 

  66. Bette S, Gempt J, Huber T, Boeckh-Behrens T, Ringel F, Meyer B, et al. Patterns and time dependence of unspecific enhancement in postoperative magnetic resonance imaging after glioblastoma resection. World Neurosurg. 2016;90:440–7.

    Article  PubMed  Google Scholar 

  67. Patel TR, McHugh BJ, Bi WL, Minja FJ, Knisely JPS, Chiang VL. A comprehensive review of MR imaging changes following radiosurgery to 500 brain metastases. AJNR Am J Neuroradiol. 2011;32(10):1885–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jakubovic R, Sahgal A, Soliman H, Milwid R, Zhang L, Eilaghi A, et al. Magnetic resonance imaging-based tumour perfusion parameters are biomarkers predicting response after radiation to brain metastases. Clin Oncol R Coll Radiol G B. 2014;26(11):704–12.

    Article  CAS  Google Scholar 

  69. Almeida-Freitas DB, Pinho MC, Otaduy MCG, Braga HF, Meira-Freitas D, da Costa Leite C. Assessment of irradiated brain metastases using dynamic contrast-enhanced magnetic resonance imaging. Neuroradiology. 2014;56(6):437–43.

    PubMed  Google Scholar 

  70. Mehrabian H, Desmond KL, Chavez S, Bailey C, Rola R, Sahgal A, et al. Water exchange rate constant as a biomarker of treatment efficacy in patients with brain metastases undergoing stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2017;98(1):47–55.

    Article  PubMed  Google Scholar 

  71. Lin NU, Lee EQ, Aoyama H, Barani IJ, Barboriak DP, Baumert BG, et al. Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol. 2015;16(6):e270–8.

    Article  PubMed  Google Scholar 

  72. Le Rhun E, Devos P, Boulanger T, Smits M, Brandsma D, Rudà R, et al. The RANO Leptomeningeal Metastasis Group proposal to assess response to treatment: lack of feasibility and clinical utility, and a revised proposal. Neuro Oncol. 2019;21:648–58.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mitsuya K, Nakasu Y, Horiguchi S, Harada H, Nishimura T, Bando E, et al. Perfusion weighted magnetic resonance imaging to distinguish the recurrence of metastatic brain tumors from radiation necrosis after stereotactic radiosurgery. J Neurooncol. 2010;99(1):81–8.

    Article  PubMed  Google Scholar 

  74. Hoefnagels FWA, Lagerwaard FJ, Sanchez E, Haasbeek CJA, Knol DL, Slotman BJ, et al. Radiological progression of cerebral metastases after radiosurgery: assessment of perfusion MRI for differentiating between necrosis and recurrence. J Neurol. 2009;256(6):878–87.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Barajas RF, Chang JS, Sneed PK, Segal MR, McDermott MW, Cha S. Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol. 2009;30(2):367–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zach L, Guez D, Last D, Daniels D, Grober Y, Nissim O, et al. Delayed contrast extravasation mri for depicting tumor and non-tumoral tissues in primary and metastatic brain tumors. PLoS One. 2012;7(12):e52008.. [Internet]. 14 déc 2012. Disponible sur: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522646/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mehrabian H, Desmond KL, Soliman H, Sahgal A, Stanisz GJ. Differentiation between radiation necrosis and tumor progression using chemical exchange saturation transfer. Clin Cancer Res Off J Am Assoc Cancer Res. 2017;23(14):3667–75.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel C. T. E. Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garcia, G.C.T.E., Bockel, S., Majer, M., Ammari, S., Smits, M. (2020). Imaging of Brain Metastases: Diagnosis and Monitoring. In: Ahluwalia, M., Metellus, P., Soffietti, R. (eds) Central Nervous System Metastases. Springer, Cham. https://doi.org/10.1007/978-3-030-23417-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23417-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23416-4

  • Online ISBN: 978-3-030-23417-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics