Skip to main content

Recent Advances in Breeding, Marker Assisted Selection and Genomics of Black Gram (Vigna mungo (L.) Hepper)

  • Chapter
  • First Online:

Abstract

Black gram (Vigna mungo (L.) Hepper) is an important leguminous pulse crop, which is grown for its protein-rich edible seeds. Due to a short life cycle and N-fixing ability, this crop is also grown as an intercrop and catch crop. Generally, exotic lines and cultivated germplasm have been used for genetic improvement of V. mungo. However, lack of suitable ideotypes for variable cropping systems, low harvest index, abiotic/biotic stresses and unavailability of quality seeds of improved varieties remain major constraints to achieve the true yield potential of this crop. This chapter presents a comprehensive worldwide overview of available biodiversity in V. mungo. Moreover, a detailed record is also presented for mutation breeding and recent advances in molecular marker-assisted breeding and genomic research for black gram with emphasis on genetic linkage maps, genes/QTLs mapping, genetic engineering and hybridization for improvement of agronomically-important traits. Availability of genomic resources which can be used to accelerate molecular breeding in V. mungo is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbas G, Hameed A, Rizwan M et al (2015) Genetic confirmation of mung bean (Vigna radiata) and mashbean (Vigna mungo) interspecific recombinants using molecular markers. Front Plant Sci 6:110–121

    Article  Google Scholar 

  • Abbas G, Ahsan M, Saleem M et al (2016) Inheritance study of different agronomic traits in mung mash interspecific recombinant genotypes. J Anim Plant Sci 26(1):149–155

    Google Scholar 

  • Abbas G, Asghar M, Rizwan M et al (2019) A process for genetic improvement in nutritional quality of mungbean by enriching its amino acid profile and protein content through recombination with mashbean. Registered as Intellectual Property Organization (IPO), Patent No. 142845

    Google Scholar 

  • Anittha I, Mullainathan L (2018) Mutagenic effect of EMS and DES on black gram (Vigna mungo L. Hepper) in M1 generation. J Phytol 12:6–08

    Google Scholar 

  • Arulbalachandran D, Mullainathan L, Velu S (2009a) Screening of mutants in black gram (Vigna mungo L. Hepper) with effect of DES and COH in M2 generation. J Phytol 1:2013–2018

    Google Scholar 

  • Arulbalachandran D, Mullainathan L, Velu S et al (2009b) Evaluation of genetic variation in mutants of black gram (Vigna mungo) as revealed by RAPD markers. Emir J Food Agric 13:42–50

    Article  Google Scholar 

  • Aversano R, Ercolano MR, Caruso I et al (2012) Molecular tools for exploring polyploid genomes in plants. Int J Mol Sci 13(8):10316–10335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baba S (2015) Combined effects of cobalt-60 GAMMA radiations and sodium azide on growth and yield of black gram (Vigna mungo L. Hepper). J Phytology 14:115–126

    Google Scholar 

  • Baird NA, Etter PD, Atwood TS et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3(10):e3376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baisakh B, Das TR, Panigrahi KK (2014) Genetic variability and correlation analysis for yield and yield contributing traits in advanced mutant lines of black gram (Vigna mungo (L). Hepper). Field Crop Res 27(3):202–205

    Google Scholar 

  • Basak J, Kundagrami S, Ghose TK, Pal A (2004) Development of yellow mosaic virus (YMV) resistance linked DNA marker in black gram (Vigna mungo) from populations segregating for YMV-reaction. Mol Breed 14(4):375–383

    Article  CAS  Google Scholar 

  • Bhalla-Sarin N, Bhomkar P, Debroy S et al (2004) Transformation of Vigna mungo (blackgram) for abiotic stress tolerance using marker free approach. In: New directions for a diverse planet: proceedings of the 4th international crop congress, Brisbane, Australia, October, p 454

    Google Scholar 

  • Bhanu AN, Kumar P, Singh MN et al (2017a) Assessment of genetic purity of inter-specific F1 hybrids involving mung bean (Vigna radiata) and (Vigna umbellate). J Exp Biol Agric Sci 5:636–643

    CAS  Google Scholar 

  • Bhanu AN, Singh MN, Srivastava K (2017b) Consequence of weather conditions for affecting crossability in three Vigna species. Electron J Plant Breed 8(2):572–576

    Article  Google Scholar 

  • Bhanu AN, Singh MN, Srivastava K (2018) Efficient hybridization procedure for better pod setting in inter-specific crosses involving Vigna species. Adv Plant Agri Res 8(2):112–116

    Google Scholar 

  • Bhargava SC, Smigocki AC (1994) Transformation of tropical grain legumes using particle bombardment. Curr Sci 66(6):439–442

    Google Scholar 

  • Bhavisha P, Purvi M, Pooja P, Vrinda S (2019) Phylogenetic implications and secondary structure analyses of black gram (Vigna mungo L Hepper) genotypes based on nrDNA ITS2 sequences. Comput Biol Chem 78:389–397

    Article  CAS  Google Scholar 

  • Bhomkar P, Upadhyay CP, Saxena M et al (2008) Salt stress alleviation in transgenic blackgram (Vigna mungo L. Hepper) by overexpression of the glyoxalase I gene using a novel Cestrum yellow leaf curling virus promoter. Mol Breed 22(2):169–181

    Article  CAS  Google Scholar 

  • Binyamin R, Khan MA, Khan AI et al (2011) Molecular characterization of urdbean (Vigna mungo) germplasm related to resistance against urdbean leaf crinkle virus. Genet Mol Res 10(3):1681–1688

    Article  CAS  PubMed  Google Scholar 

  • Blakeslee AF, Avery AG (1937) Methods of inducing doubling of chromosomes in plants: by treatment with colchicine. J Hered 28:393–411

    Article  CAS  Google Scholar 

  • Chaitieng B, Kaga A, Tomooka N et al (2006) Development of a black gram (Vigna mungo L Hepper) linkage map and its comparison with an azuki bean (Vigna angularis Ohwi and Ohashi) linkage map. Theor Appl Genet 113(7):1261–1269

    Article  CAS  PubMed  Google Scholar 

  • Chandel KPS, Lester RN, Starling RJ (1984) The wild ancestors of urid and mung beans (Vigna mungo) and (Vigna radiata). Bot J Linn Soc 89(1):85–96

    Article  Google Scholar 

  • Chen ZJ, Ni Z (2006) Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. BioEssays 28:240–252

    Article  PubMed  Google Scholar 

  • Chinchest A, Nakeeraks P (1990) Mutation breeding of blackgram (Vigna mungo). Mungbean Meet 90:43–46

    Google Scholar 

  • Choi HK, Kim D, Uhm T (2004) A sequence based genetic map of (Medicago truncatula) and comparison of marker colinearity with (Medicago sativa). Genet 166(3):1463–1502

    Article  CAS  Google Scholar 

  • Chopra R, Saini R (2014) Transformation of blackgram (Vigna mungo) by Barley chitinase and ribosome inactivating protein genes towards improving resistance to Corynespora leaf spot fungal disease. Appl Biochem Biotech 174(8):2791–2800

    Article  CAS  Google Scholar 

  • Chowdhury RK, Chowdhury JB (1977) Intergeneric hybridization between Vigna mungo (L.) Hepper and Phaseolus calcaratus Roxb. Indian J Agri Sci 47:117–121

    Google Scholar 

  • Choudhary AK, Sultana R, Vales MI et al (2018) Integrated physiological and molecular approaches to improvement of abiotic stress tolerance in two pulse crops of the semi-arid tropics. Crop J 6(2):99–114

    Article  Google Scholar 

  • Crespel L, Meynet J (2003) Manipulation of ploidy level. In: Roberts A, Debener T, Gudin S (eds) Encyclopedia of rose science. Elsevier Academic Press, Amsterdam, pp 5–11

    Chapter  Google Scholar 

  • Cruz VM, Kilian A, Dierig DA (2013) Development of DArT marker platforms and genetic diversity assessment of the US collection of the new oilseed crop lesquerella and related species. PLoS One 8(5):e64062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dar TUH, Rehman RU (2017) Future prospects in polyploidy research. In: Polyploidy: recent trends and future perspectives. Springer, New Delhi, pp 101–104

    Chapter  Google Scholar 

  • Das DK (2018) Expression of a bacterial chitinase (ChiB) gene enhances resistance against (Erysiphae polygoni) induced powdery mildew disease in the transgenic black gram (Vigna mungo L.). American J Plant Sci 9(08):1759

    Article  CAS  Google Scholar 

  • Dikshit HK, Jhang T, Singh NK et al (2007) Genetic differentiation of Vigna species by RAPD, URP and SSR markers. Biologia Plantar 51(3):451–457

    Article  CAS  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez GCJ, Shanmugasundaram S (1988) The AVRDC mungbean improvement program: the past, present and future. In: McLean BT (ed) Mungbean: proceeding of the second international symposium. Asian vegetable Research and Development Center: Taiwan, pp 58–70

    Google Scholar 

  • Fuller DQ, Harvey EL (2006) The archaeobotany of Indian pulses: identification processing and evidence for cultivation. Environ Archaeol 11(2):219–246

    Article  Google Scholar 

  • Ganguli S, Dey A, Banik R et al (2016) Analyses of MYMIV-induced transcriptome in Vigna mungo as revealed by next generation sequencing. Genomics Data 7:226–228

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganguly PR, Bhat K (2012) Study of the pattern of variation for microsatellite markers in Black gram (Vigna mungo) germplasm. DHR IJBLS 3(1):1–6

    Google Scholar 

  • Gautam NK, Kumar K, Prasad M (2016) Leaf crinkle disease in urdbean (Vigna mungo) an overview on causal agent vector and host. Protoplasma 253(3):729–746

    Article  PubMed  Google Scholar 

  • Ghafoor A, Ahmad Z (2005) Diversity of agronomic traits and total seed protein in black gram (Vigna mungo). Acta Biol Crac Ser Bot 47(2):69–75

    Google Scholar 

  • Ghafoor A, Sharif A, Ahmad Z et al (2001) Genetic diversity in blackgram (Vigna mungo). Field Crops Res 69(2):183–190

    Article  Google Scholar 

  • Ghafoor A, Sultana T, Rizvi ZF (2012) Genetic diversity in black gram (Vigna mungo) for randomly amplified polymorphic DNA markers. Pak J Bot 44(2):473–478

    CAS  Google Scholar 

  • Gupta S, Gopalakrishna T (2009) Genetic diversity analysis in blackgram (Vigna mungo) using AFLP and transferable microsatellite markers from azuki bean (Vigna angularis). Genome 52(2):120–129

    Article  CAS  PubMed  Google Scholar 

  • Gupta SK, Gopalakrishna T (2013) Advances in genome mapping in orphan grain legumes of genus Vigna. Indian J Genet Plant Breed 73:1–13. https://doi.org/10.5958/j.0019-5200.73.1.001

    Article  Google Scholar 

  • Gupta SK, Souframanien J, Gopalakrishna T (2008) Construction of a genetic linkage map of black gram (Vigna mungo) based on molecular markers and comparative studies. Genome 51(8):628–637

    Article  CAS  PubMed  Google Scholar 

  • Gurumurthy S, Sarkar B, Vanaja M et al (2019) Morpho-physiological and biochemical changes in black gram (Vigna mungo L. Hepper) genotypes under drought stress at flowering stage. Acta Physiol Plant 41:42

    Article  CAS  Google Scholar 

  • He J, Zhao X, Laroche A et al (2014) Genotyping by sequencing an ultimate marker assisted selection tool to accelerate plant breeding. Front Plant Sci 15:472–484

    Google Scholar 

  • Iseki K, Takahashi Y, Muto C et al (2016) Diversity and evolution of salt tolerance in the genus Vigna. PLoS One 11(10):e0164711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iseki K, Takahashi Y, Muto C et al (2018) Diversity of drought tolerance in the genus Vigna. Front Plant Sci 9:110–121

    Article  Google Scholar 

  • Jansen PCM (2006) Vigna mungo (L.) Hepper. Record from Protabase. PROTA (Plant Resour Trop Africa/Ressources végétales l’Afrique Trop) Wageningen, Netherlands

    Google Scholar 

  • Jasrotia RS, Iquebal MA, Yadav PK et al (2017) Development of transcriptome based web genomic resources of yellow mosaic disease in black gram (Vigna mungo). Physiol Mol Biol Plants 23(4):767–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayamani P, Sathya M (2013) Genetic diversity in pod characters of black gram (Vigna mungo). Legum Res An Int J 36(3):220–223

    Google Scholar 

  • Jeevitha S, Karthikeyan R, Vignesh M et al (2018) Estimation of morphological and molecular genetic diversity in blackgram (Vigna mungo) under YMV hotspot regime. Hort Res 6:119–130

    Google Scholar 

  • Jiang G-L (2013) Molecular markers and marker assisted breeding in plants. Plant breed from lab to fields. InTech Open:45–83

    Google Scholar 

  • Kaewwongwal A, Kongjaimun A, Somta P et al (2015) Genetic diversity of the black gram (Vigna mungo) gene pool as revealed by SSR markers. Breed Sci 65(2):127–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapildev G, Chinnathambi A, Sivanandhan G et al (2016) High efficient Agrobacterium mediated in planta transformation in black gram (Vigna mungo). Acta Phys Plant 38(8):205–215

    Article  CAS  Google Scholar 

  • Keneni G, Bekele E, Getu E et al (2011) Breeding food legumes for resistance to storage insect pests potential and limitations. Sustain 3(9):1399–1415

    Article  Google Scholar 

  • Kumar A, Dutt D, Gautam A (2016) Production of crude enzyme from Aspergillus nidulans AKB-25 using black gram (Vigna mungo) residue as the substrate and its industrial applications. J Genet Eng Biotech 14(1):107–118

    Article  Google Scholar 

  • Kundu A, Pal A (2012) Identification and characterization of elite inbred lines with MYMIV resistance in black gram (Vigna mungo). Field Crops Res 135:116–125

    Article  Google Scholar 

  • Kundu A, Paul S, Dey A, Pal A (2017) High throughput sequencing reveals modulation of microRNAs in black gram (Vigna mungo) upon yellow mosaic India virus inoculation highlighting stress regulation. Plant Sci 257:96–105

    Article  CAS  PubMed  Google Scholar 

  • Kuralarasan V, Vanniarajan C, Kanchana S et al (2017) Genetic divergence heritability and genetic advance in mutant lines of urdbean (Vigna mungo). Am J Res Commun 104:652–663

    Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3(2):91–99

    Article  CAS  PubMed  Google Scholar 

  • Maestri E, Malcevschi A, Massari A, Marmiroli N (2002) Genomic analysis of cultivated barley (Hordeum vulgare) using sequence tagged molecular markers estimates of divergence based on RFLP and PCR markers derived from stress responsive genes and simple sequence repeats. Mol Genet Genom 267(2):186–201

    Article  CAS  Google Scholar 

  • Maiti S, Basak J, Kundagrami S, Pal A (2011) Molecular marker-assisted genotyping of mungbean yellow mosaic India virus resistant germplasms of mungbean and urdbean. Mol Biotechnol 42:95–104

    Article  CAS  Google Scholar 

  • Maréchal R (1978) Etude taxonomique d’un groupe complexe d’espèces des genres Phaseolus et Vigna (Papilionaceae) sur la base de données morphologiques et polliniques traitées par l’analyse informatique. Boiss 28:1–273

    Google Scholar 

  • Muruganantham M, Amutha S, Selvaraj N et al (2007) Efficient Agrobacterium mediated transformation of Vigna mungo using immature cotyledonary node explants and phosphinothricin as the selection agent. In Vitro Cell Dev Biol Plant 43(6):550–557

    Article  CAS  Google Scholar 

  • Nadeem MA, Nawaz MA, Shahid MQ et al (2018) DNA molecular markers in plant breeding current status and recent advancements in genomic selection and genome editing. Biotechnol Equip 32(2):261–285

    Article  CAS  Google Scholar 

  • Naito K, Takahashi Y, Chaitieng B et al (2017) Multiple organ gigantism caused by mutation in VmPPD gene in blackgram (Vigna mungo). Breed Sci 67(2):151–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noble TJ, Tao Y, Mace ES et al (2018) Characterization of linkage disequilibrium and population structure in a mung bean (Vigna radiata) diversity panel. Front Plant Sci 8:2102–2112

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandiyan M, Senthil N, Ramamoorthi N et al (2010) Interspecific hybridization of Vigna radiata x 13 wild Vigna species for developing MYMV donar. Electro J Plant Breed 1(4):600–610

    Google Scholar 

  • Patial M, Thakur SR, Singh KP, Thakur A (2017) Frequency and spectrum of chlorophyll mutations and induced variability in black gram (Vigna mungo). Legum Res 40(1):39–46

    Google Scholar 

  • Patidar M, Sharma H, Haritwal S (2018) Genetic variability studies in blackgram (Vigna mungo L.) Hepper. Int J Chemical Studies 6(2):1501–1503

    Google Scholar 

  • Paul S, Kundu A (2014) Identification and expression profiling of black gram (Vigna mungo) microRNAs from leaf small RNA transcriptome by deep sequencing. J Integr Plant Biol 56(1):15–23

    Article  CAS  PubMed  Google Scholar 

  • Pratap A, Prajapati U, Singh CM et al (2018) Potential, constraints and applications of in vitro methods in improving grain legumes. Plant Breed 137:235–249

    Article  Google Scholar 

  • Raina A, Laskar R, Khursheed S et al (2016) Role of mutation breeding in crop improvement- past, present and future. Asian Res J Agric 2:1–13

    Article  Google Scholar 

  • Raina AA, Khursheed SH, Khan SA (2018) Optimisation of mutagen doses for gamma rays and sodium azide in black gram (Vigna mungo). Tren Biosci 11(13):2386–2389

    Google Scholar 

  • Ramchander L, Shunmugavalli N, Rajesh S (2017) Induced mutagenic frequency and spectrum of chlorophyll mutants in black gram (Vigna mungo). Farm Sci J 7(1):19–22

    Google Scholar 

  • Rao SR, Raina SN (2005) Cytological evaluation of colchitetraploidy in moth bean (Vigna aconitifolia) and its allied species. J Arid Legume 2:389–396

    Google Scholar 

  • Reeves TG, Thomas G, Ramsay G (2016) Save and grow in practice maize rice wheat a guide to sustainable cereal production. UN Food and Agriculture Organization, Rome

    Google Scholar 

  • Ribaut JM, Vicente MC, Delannay X (2010) Molecular breeding in developing countries challenges and perspectives. Curr Opin Plant Biol 13(2):213–218

    Article  PubMed  Google Scholar 

  • Saini R, Jaiwal PK (2002) Age, position in mother seedling orientation and polarity of the epicotyl segments of black gram (Vigna mungo) determines its morphogenic response. Plant Sci 163(1):101–109

    Article  CAS  Google Scholar 

  • Saini R, Jaiwal PK (2005) Efficient transformation of a recalcitrant grain legume Vigna mungo L. Hepper via Agrobacterium-mediated gene transfer into shoot apical meristem cultures. Plant Cell Rep 24:164–171

    Article  CAS  PubMed  Google Scholar 

  • Saini R, Jaiwal S, Jaiwal PK (2003) Stable genetic transformation of black gram (Vigna mungo) via Agrobacterium tumefaciens. Plant Cell Rep 21(9):851–859

    CAS  PubMed  Google Scholar 

  • Sakai H, Naito K, Takahashi Y et al (2015) The vigna genome server vig GS a genomic knowledge base of the genus Vigna based on high-quality annotated genome sequence of the Azuki Bean, Vigna angularis (Willd.) Ohwi and Ohashi. Plant Cell Physiol 57(1):e2

    Article  PubMed  CAS  Google Scholar 

  • Saxena RK, Prathima C, Saxena KB et al (2010) Novel SSR markers for polymorphism detection in pigeonpea (Cajanus spp.). Plant Breed 129(2):142–148

    Article  CAS  Google Scholar 

  • Sehrawat N, Yadav M, Bhat KV et al (2016) Introgression of mungbean yellow mosaic virus resistance in black gram (Vigna mungo) and purity testing of f1 hybrids using SSRs. Turk J Agric For 40(1):95–100

    Article  CAS  Google Scholar 

  • Sen NK, Jana MK (1964) Genetics of black gram (Phaseolus mungo L.). Genetica 34:46–57

    Article  Google Scholar 

  • Shafique S, Khan MR, Nisar MO, Rehman S (2011) Investigation of genetic diversity in blackgram (Vigna mungo). Pak J Bot 43(2):1223–1232

    Google Scholar 

  • Shanmungam AS, Rathnasamy R, Rangasamy SRS (1983) Crossability studies between green gram and blackgram. Curr Sci 52:1018–1020

    Google Scholar 

  • Singh DP (1990) Distant hybridization in genus Vigna – a review. Ind J Genet Plant Breed 50:268–276

    Google Scholar 

  • Singh MN, Singh RM (1991) Observation on the inter-specific hybrids between two species of Vigna. In: Abs Golden Jubilee Nat Symp New Delhi, pp 708–709

    Google Scholar 

  • Singh MN, Singh SK (2006) Study of induced amphidiploid derivatives of Vigna × Vigna mungo. Indian J Genet Plant Breed 66(3):245–246

    Google Scholar 

  • Singh MN, Singh RM, Singh UP (1996) Studies on hybrids and transgressive segregates in wide crosses of mungbean and urdbean. Indian J Genet 56:109–113

    Google Scholar 

  • Singh MN, Kumar R, Singh RM, Singh UP (1997) Inter specific hybridization between mungbean and urdbean. Indian J Pulse Res 10:237–239

    Google Scholar 

  • Singh BB, Solanki RK, Chaubey BK, Verma P (2011) Breeding for improvement of warm season food legumes. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CAB International, Oxfordshire, pp 63–80

    Chapter  Google Scholar 

  • Sivaprakash KR, Prashanth SR, Mohanty BP, Parida A (2004) Genetic diversity of black gram (Vigna mungo) landraces as evaluated by amplified fragment length polymorphism markers. Curr Sci 25(7):1411–1416

    Google Scholar 

  • Snape JW, Chapman V, Moss J, Blanch CE, Miller TE (1979) The crossability of wheat varieties with Hordeum bulbosum. Hered 42:291–298

    Article  Google Scholar 

  • Sohel M, Miah M, Mohiuddin SJ et al (2016) Correlation and path coefficient analysis of blackgram (Vigna mungo). J Biosci Agric Res 7(2):621–629

    Article  Google Scholar 

  • Somta P, Chen J, Yundaeng C et al (2019) Development of an SNP based high density linkage map and QTL analysis for bruchid (Callosobruchus maculatus F) resistance in black gram (Vigna mungo). Sci Rep 9(1):3930–3941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Souframanien J, Gopalakrishna T (2004) A comparative analysis of genetic diversity in black gram (Vigna mungo) genotypes using RAPD and ISSR marker. Theor Appl Genet 109(8):1687–1693

    Article  CAS  PubMed  Google Scholar 

  • Souframanien J, Gopalakrishna T (2006) ISSR and SCAR markers linked to the mungbean yellow mosaic virus resistance gene in blackgram (Vigna mungo). Plant Breed 125(6):619–622

    Article  CAS  Google Scholar 

  • Souframanien J, Reddy KS (2015) De novo assembly characterization of immature seed transcriptome and development of genic SSR markers in black gram (Vigna mungo). PLoS One 10(6):e0128748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souframanien J, Gupta SK, Gopalakrishna T (2010) Identification of quantitative trait loci for bruchid (Callosobruchus maculatus) resistance in black gram (Vigna mungo). Euphytica 176(3):349–356

    Article  Google Scholar 

  • Subramanian D (1980) Inter specific hybridization in Vigna species. Ind J Genet 40:437–438

    Google Scholar 

  • Suman S, Rani B, Sharma VK et al (2018) SSR marker based profiling and diversity analysis of black gram (Vigna mungo) genotypes. Hort Biotech Res 7:144–156

    Google Scholar 

  • Sun X, Liu D, Zhang X et al (2013) SLAF seq an efficient method of large scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One 8(3):e58700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talukdar A, Shivakumar M (2012) Pollination without emasculation an efficient method of hybridization in soybean (Glycine max Merrill). Curr Sci 103(6):628–630

    Google Scholar 

  • Thilagavathi C, Mullainathan L (2011) Influence of physical and chemical mutagens on quantitative characters of black gram (Vigna mungo). Int Multidiscip Res J 1(1):12–23

    Google Scholar 

  • Tickoo J, Lal SK, Chandra N, Dikshit HK (2006) Mungbean breeding. In: Ali M, Kumar S (eds) Advances in mung bean and urd bean. Indian Inst Pulses Research, Kanpur, pp 110–148

    Google Scholar 

  • Tripathy SK, Mohanty P, Jena M et al (2016) Revealing contrasting genetic variation and study of genetic diversity in urdbean (Vigna mungo) using SDS PAGE of seed storage proteins. Res Biotech 7:111–120

    Google Scholar 

  • Usharani KS, Kumar CA (2015) Induced polygenic variability using combination treatment of gamma rays and ethyl methane sulphonate in black gram (Vigna mungo). Afr J Biotech 14(20):1702–1709

    Article  CAS  Google Scholar 

  • Usharani KS, Kumar CA (2016) Estimation of variability heritability and genetic advance in mutant populations of black gram (Vigna mungo). SABRAO J Breed Genet 48(3):258–265

    Google Scholar 

  • Varalaxmi Y, Prasanna A, Yadav SK et al (2013) Optimization of parameters for Agrobacterium mediated transformation of black gram (Vigna mungo) using cotyledon explants. Afr J Biotech 12(11):1209–1215

    Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants features and applications. Trends Biotech 23(1):48–55

    Article  CAS  Google Scholar 

  • Varshney RK, Close TJ, Singh NK et al (2009) Orphan legume crops enter the genomics era. Curr Opin Plant Biol 12(2):202–210

    Article  PubMed  Google Scholar 

  • Verma RPS, Singh DP (1986) The allelic relationship of genes giving resistance to mungbean yellow mosaic virus in blackgram. Theor Appl Genet 72(6):737–738

    Article  CAS  PubMed  Google Scholar 

  • Verma N, Tajwar I, Chakraborty M, Manjaya JG (2018) Mutation study of gamma ray in M3 generation of urdbean (Vigna mungo). J Pharmacogn Phytochem 227:4136–4143

    Google Scholar 

  • Veni K, Vanniarajan C, Souframanien J (2017) Probit analysis and effect of electron beam and gamma rays in blackgram (Vigna mungo (L.) Hepper). Electron J Plant Breed 8(3):950–955

    Article  Google Scholar 

  • Vishalakshi B, Umakanth B, Shanbha AP et al (2017) RAPD assisted selection of black gram (Vigna mungo L. Hepper) towards the development of multiple disease resistant germplasm. 3 Biotech 7(1):1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahlang DR, Lamo JM, Goel S, Rao SR (2019a) Karyo-morphological consistency and heterochromatin distribution pattern in diploid and colchitetraploids of Vigna radiata and V. mungo. Meta Gene 21:100569

    Article  Google Scholar 

  • Wahlang DR, Suchiang W, Goel S, Rao SR (2019b) Analysis of genetic variation using ISSR and the development of SCAR marker in synthetic autotetraploids of Vigna mungo. Vegetos 32:48

    Google Scholar 

  • Win KT, Oo AZ (2017) Salt stress induced changes in protein profiles in two blackgram (Vigna mungo) varieties differing salinity tolerance. Adv Plants Agric Res 6(6):112–123

    Google Scholar 

  • Win KT, Ookawa T, Kanekatsu M, Hirasawa T (2016) Changes in hydraulic conductance cause the difference in growth response to short term salt stress between salt tolerant and sensitive black gram (Vigna mungo) varieties. J Plant Physiol 193:71–78

    Article  CAS  PubMed  Google Scholar 

  • Xu Y (2010) Molecular plant breeding. CAB International, Wallingford/Cambridge, MA

    Book  Google Scholar 

  • Ye YM, Tong J, Shi XP et al (2010) Morphological and cytological studies of diploid and colchicine-induced tetraploid lines of crape myrtle (Lagerstroemia indica L.). Sci Hort 124:95–101

    Article  Google Scholar 

  • Young ND, Udvardi M (2009) Translating Medicago truncatula genomics to crop legumes. Curr Opin Plant Biol 12:193–201

    Article  CAS  PubMed  Google Scholar 

  • Zia ul Haq M, Ahmad S, Bukhari SA et al (2014) Compositional studies and biological activities of some mash bean (Vigna mungo (L.) Hepper) cultivars commonly consumed in Pakistan. Biol Res 47:23. https://doi.org/10.1186/0717-6287-47-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Appendices

2.1.1 Appendix I: Major Institutes Engaged in Research on Vigna mungo

Country

Name of institute

Website

Number of accessions

Bangladesh

Bangladesh Agricultural Research Institute (BARI)

http://www.bari.gov.bd

339

Bangladesh Agricultural Research Council (BARC)

http://www.barc.gov.bd/

106

Colombia

Centro de Investigación La Selva, (CoRPOICA) (now AGROSAVIA) Rionegro Antioquia

http://www.corpoica.org.co

108

India

ICAR-National Bureau of Plant Genetic Resources (NBPGR)

www.nbpgr.ernet.in

3131

Indian Agricultural Research Institute (IARI)

www.iari.res.in

90

Bhabha Agriculture Research Centre

https://www.barc.gov.in

Indian Council of Agriculture Research Institute, Tamil Nadu

http://www.icar.org.in

113

Nepal

Nepal Agricultural Research Council (NARC)

http://narc.gov.np/

83

Pakistan

Pakistan Agriculture Research Council, PGRI/NARC, Islamabad

http://www.parc.gov.pk

693

Ayub Agriculture Research Institute (AARI), Faisalabad

https://aari.punjab.gov.pk

50

Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad

http://www.niab.org.pk

112

Russian Federation

Vavilov Institute of Plant Genetic Resources (VIR)

https://www.vir.nw.ru/en

210

Taiwan

The World Vegetable Center

https://avrdc.org/

481

USA

Southern Regional Plant Introduction Station, USDA-ARS, Griffin, GA

https://www.ars-grin.gov

300

Japan

The National Institute of Agro-biological Sciences (NIAS)

http://www.naro.affrc.go.jp

1198

China

National Crop Germplasm Resources Platform

http://www.cgris.net

469

 

Yunnan Academy of Agriculture Sciences

http://www.yaas.org.cn

300

Belgium

Walloon Pulses Research Centre, Gembloux

http://www.cra.wallonie.be

79

2.1.2 Appendix II: Important Cultivars and Accessions of V. mungo

Cultivar/ accessions

Important traits

Developer/Maintainer institute

EC319031-33

High yield, flood tolerance

ICAR-NBPGR, India

EC319034-37

Drought tolerance

IC553269

Brown pod and yellow seed

SVBPUA&T, Meerut, India

IC296878

Dwarf semi-erect with ground pod bearing habit

CCSHAU, Hisar, INDIA

VBG-09-012

Multipod formation at base of peduncle, leaf axils and base of clusters

NPRC, Vamban, Pudukkottai, Tamil Nadu, India

VBG-04-014

Unique plant type

PU 07-7

Large seeded, mung bean yellow mosaic virus (MYMV) resistant

Department of Genetics and Plant Breeding, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India

PU 08-1

Large seeded, early maturing, MYMV resistant

PU 08-4

Early maturing, MYMV resistant, high yield/plant

PU 06-16

Early maturing, higher pod length, MYMV resistant

PMU 01

Susceptible to MYMV, higher seeds/pod and pods/plant

Pant U-31

Early, dwarf and compact plant type, resistant to MYMV, released for commercial cultivation

Pant U-40

Erect plant type, resistant to MYMV, released for commercial cultivation

M-01001-1 and M-6036-21

Drought tolerance

Ayub Agricultural Research Institute (AARI), Faisalabad, Pakistan

M-97 and Arroj-II

Drought susceptible

MASH 97

Semi-erect growth habit, early maturing and tolerant against lodging

Pulses Research Institute, (AARI), Faisalabad, Pakistan

MASH 2

Semi erect, medium early maturing, high yielding, low shattering

NARC, Islamabad, Pakistan

MASH 3

Erect growing, medium early maturing

CHAKWAL MASH

Semi-erect, short duration, for arid agriculture regions

BARI, Ckakwal, Pakistan

MASH 88

Semi-erect, medium long maturing

Pulses Research Institute, (AARI), Faisalabad, Pakistan

BARI Mash-1

A medium statured (45–50 cm), semi erect cultivar, tolerant to yellow mosaic virus

Bangladesh Agriculture Research Institute (BARI), Gazipur, Bangladesh

BARI Mash-2 (Sarath)

BARI Mash-2 is erect and attains a height of 33–35 cm. Tolerant to yellow mosaic virus

BARI MASH-3 (HEMANTA)

Erect growth habit and attains a height of 35–38 cm, high yielding, tolerant to yellow mosaic virus

BARI Mash-4

Dwarf plant type, tolerant to yellow mosaic virus

Phitsanulok 2

Better sprouting and nutrition

Chai Nat Field Crops Research Center, Chai Nat, Thailand

Chai Nat 80

Uthong 2

MI – 1

Susceptible to mung bean yellow mosaic virus (MYMV), Cercospora leaf spot and bruchids

Field crop research and development institute, Department of Agriculture, Sri Lanka

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azeem, F. et al. (2019). Recent Advances in Breeding, Marker Assisted Selection and Genomics of Black Gram (Vigna mungo (L.) Hepper). In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Legumes. Springer, Cham. https://doi.org/10.1007/978-3-030-23400-3_2

Download citation

Publish with us

Policies and ethics