Advertisement

Latency Control for Distributed Machine Vision at the Edge Through Approximate Computing

  • Anjus GeorgeEmail author
  • Arun Ravindran
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11520)

Abstract

Multicamera based Deep Learning vision applications subscribe to the Edge computing paradigm due to stringent latency requirements. However, guaranteeing latency in the wireless communication links between the cameras nodes and the Edge server is challenging, especially in the cheap and easily available unlicensed bands due to the interference from other camera nodes in the system, and from external sources. In this paper, we show how approximate computation techniques can be used to design a latency controller that uses multiple video frame image quality control knobs to simultaneously satisfy latency and accuracy requirements for machine vision applications involving object detection, and human pose estimation. Our experimental results on an Edge test bed indicate that the controller is able to correct for up to 164% degradation in latency due to interference within a settling time of under 1.15 s.

Keywords

Edge computing Machine vision Approximate computing Latency control 

References

  1. 1.
    Mobilenet-ssd. https://github.com/chuanqi305/MobileNet-SSD. Accessed 12 Nov 2018
  2. 2.
    Opencv documentation. https://docs.opencv.org. Accessed 08 Nov 2018
  3. 3.
    Ben Khadra, M.A.: An introduction to approximate computing. CoRR abs/1711.06115 (2017). http://arxiv.org/abs/1711.06115
  4. 4.
    Betzel, F., Khatamifard, K., Suresh, H., Lilja, D.J., Sartori, J., Karpuzcu, U.: Approximate communication: techniques for reducing communication bottlenecks in large-scale parallel systems. ACM Comput. Surv. (CSUR) 51(1), 1 (2018)CrossRefGoogle Scholar
  5. 5.
    Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog computing: a platform for internet of things and analytics. In: Bessis, N., Dobre, C. (eds.) Big Data and Internet of Things: A Roadmap for Smart Environments. SCI, vol. 546, pp. 169–186. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-05029-4_7CrossRefGoogle Scholar
  6. 6.
    Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, MCC 2012, pp. 13–16. ACM, New York (2012).  https://doi.org/10.1145/2342509.2342513
  7. 7.
    Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017).  https://doi.org/10.1109/CVPR.2017.143
  8. 8.
    Chen, C., Choi, J., Gopalakrishnan, K., Srinivasan, V., Venkataramani, S.: Exploiting approximate computing for deep learning acceleration. In: 2018 Design, Automation & Test in Europe Conference & Exhibition, DATE 2018, Dresden, Germany, 19–23 March 2018, pp. 821–826 (2018).  https://doi.org/10.23919/DATE.2018.8342119
  9. 9.
    Chiang, M., Zhang, T.: Fog and iot: an overview of research opportunities. IEEE Internet Things J. PP(99), 1 (2016)Google Scholar
  10. 10.
    Ha, K., Chen, Z., Hu, W., Richter, W., Pillai, P., Satyanarayanan, M.: Towards wearable cognitive assistance. In: Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and Services, MobiSys 2014. pp. 68–81. ACM, New York, (2014).  https://doi.org/10.1145/2594368.2594383
  11. 11.
    Howard, A.G., et al.: Mobilenets: Efficient convolutional neural networks for mobile vision applications (2017)Google Scholar
  12. 12.
    Ibrahim, A., Osta, M., Alameh, M., Saleh, M., Chible, H., Valle, M.: Approximate computing methods for embedded machine learning. In: 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 845–848. IEEE (2018)Google Scholar
  13. 13.
    Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  14. 14.
    Lee, E.A., et al.: The swarm at the edge of the cloud. IEEE Design Test 31(3), 8–20 (2014)CrossRefGoogle Scholar
  15. 15.
    Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46448-0_2CrossRefGoogle Scholar
  16. 16.
    Lu, Y., Chowdhery, A., Kandula, S.: Visflow: a relational platform for efficient large-scale video analytics. Technical report, June 2016. https://www.microsoft.com/en-us/research/publication/visflow-relational-platform-efficient-large-scale-video-analytics/
  17. 17.
    Mittal, S.: A survey of techniques for approximate computing. ACM Comput. Surv. (CSUR) 48(4), 62 (2016)Google Scholar
  18. 18.
    Pakha, C., Chowdhery, A., Jiang, J.: Reinventing video streaming for distributed vision analytics. In: 10th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 2018). USENIX Association, Boston, MA (2018). https://www.usenix.org/conference/hotcloud18/presentation/pakha
  19. 19.
    Parag Shah, A., Lamare, J.B., Nguyen-Anh, T., Hauptmann, A.: CADP: a novel dataset for CCTV traffic camera based accident analysis, pp. 1–9 (2018)Google Scholar
  20. 20.
    Rasouli, A., Kotseruba, I., Tsotsos, J.K.: Are they going to cross? A benchmark dataset and baseline for pedestrian crosswalk behavior. In: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 206–213 (2017)Google Scholar
  21. 21.
    Sabella, D., Vaillant, A., Kuure, P., Rauschenbach, U., Giust, F.: Mobile-edge computing architecture: the role of mec in the internet of things. IEEE Consum. Electron. Mag. 5(4), 84–91 (2016)CrossRefGoogle Scholar
  22. 22.
    Sapienza, M., Guardo, E., Cavallo, M., Torre, G.L., Leombruno, G., Tomarchio, O.: Solving critical events through mobile edge computing: an approach for smart cities. In: 2016 IEEE International Conference on Smart Computing (SMARTCOMP), pp. 1–5, May 2016Google Scholar
  23. 23.
    Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for vm-based cloudlets in mobile computing. IEEE Pervasive Comput. 8(4), 14–23 (2009)CrossRefGoogle Scholar
  24. 24.
    Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)CrossRefGoogle Scholar
  25. 25.
    Vermesan, O., Friess, P., Guillemin, P., Gusmeroli, S.: Internet of Things Strategic Research Agenda. River Publishers, Alsbjergvej (2011)Google Scholar
  26. 26.
    Zhang, W., Li, S., Liu, L., Jia, Z., Zhang, Y., Raychaudhuri, D.: Hetero-edge: orchestration of real-time vision applications on heterogeneous edge clouds (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of North Carolina at CharlotteCharlotteUSA

Personalised recommendations