Skip to main content

Micronutrients and Other Trace Elements

  • Chapter
  • First Online:
Book cover Water Quality

Abstract

The solubilities of most minerals from which trace metals in natural waters originate are favored by low pH. The concentration of the free ion of a dissolved trace element usually is much lower than is the total concentration of the trace element. This results from ion pair associations between the free trace ion and major ions, complex ion formation, hydrolysis of metal ions, and chelation of metal ions. Several trace elements—zinc, copper, iron, manganese, boron, fluorine, iodine, selenium, cadmium, cobalt, and molybdenum—are essential to plants, animals or both. A few other trace elements are suspected, but not unequivocally proven to be essential. There are some reports of low micronutrient concentrations limiting the productivity of water bodies; but primary productivity in most water bodies apparently is not limited by a shortage of micronutrients. Trace elements—including the ones that are nutrients—may be toxic at high concentration to aquatic organisms. Excessive concentrations of several trace metals in drinking water also can be harmful to human health. Instances of trace element toxicity in aquatic animals and humans usually have resulted from anthropogenic pollution. Nevertheless, excessive concentrations of trace metals in drinking water sometimes occur naturally—an example is the presence of chronically-toxic concentrations of arsenic in groundwater that serves as the water supply for several million people in a few provinces of Bangladesh and adjoining India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Accornero M, Marini L, Lelli M (2008) The dissociation constant of antimonic acid at 10-40°C. J Solution Chem 37:785–800

    Article  CAS  Google Scholar 

  • Anderson RA (1997) Chromium as an essential nutrient for humans. Regul Toxicol Pharmacol 26:535–541

    Article  Google Scholar 

  • Arnon DI, Wessel G (1953) Vanadium as an essential element in green plants. Nature 172:1039–1040

    Article  CAS  Google Scholar 

  • Baralkiewicz D, Siepak J (1999) Chromium, nickel, and cobalt in environmental samples and existing legal norms. Pol J Environ Stud 8:201–208

    CAS  Google Scholar 

  • Besser JM, Leib KJ (2007) Toxicity of metals in water and sediment to aquatic biota. In: Church SE, von Guerard P, Finger SE (eds) Integrated investigations of environmental effects of historical mining in the Animas River Watershed, San Juan County, Colorado. U.S. Geological Survey, Washington, p. 839–849

    Google Scholar 

  • Boyd CE, Walley WW (1972) Studies of the biogeochemistry of boron. I. Concentrations in surface waters, rainfall, and aquatic plants. Am Midl Nat 88(1):1–14

    Article  CAS  Google Scholar 

  • British Geological Survey (2000) Iodine. Water quality fact sheet, London

    Google Scholar 

  • Camargo JA (2003) Fluoride toxicity to aquatic organisms: a review. Chemosphere 50:251–264

    Article  Google Scholar 

  • Canton JH, Webster PW, Mathijssen-Speikman EA (1983) Study on the toxicity of sodium bromide to different freshwater organisms. Food Chem Toxicol 21:369–378

    Article  CAS  Google Scholar 

  • Cardwell AS, Adams WJ, Gensemer RW, Nordheim E, Santore RC, Ryan AC, Stubblefield WA (2018) Chronic toxicity of aluminum, at pH 6, to freshwater organisms: empirical data for the development of international regulatory standards/criteria. Environ Toxicol Chem 37:36–48

    Article  CAS  Google Scholar 

  • Chowdhury UK, Biswas BK, Chowdhury TR, Samanta G, Mandal BK, Basu GC, Cahnda CR, Lodh D, Saha KC, Murkherfee SK, Roy S, Kalir S, Quamruzzaman Q, Chakraborti D (2000) Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ Health Perspect 108:393–397

    Article  CAS  Google Scholar 

  • Ćosović B, Degobbis D, Bilinski H, Branica M (1982) Inorganic cobalt species in seawater. Geochim Cosmochim Acta 46:151–158

    Article  Google Scholar 

  • Deverel SJ, Goldberg S, Fujii R (2012) Chemistry of trace elements in soils and groundwater. In: Wallender WW, Tanji KK (eds) ASCE manual and reports on Engineering practice No 71 Agricultural salinity assessment and management, 2nd edn. ASCE, Reston, pp 89–137

    Google Scholar 

  • Durum WH, Haffty J (1961) Occurrence of minor elements in water. United States Geological Survey Circular 445, United States Government Printing Office, Washington

    Book  Google Scholar 

  • Esdaile LJ, Chalker JM (2018) The mercury problem in artisanal and small-scale gold mining. Chem Eur J 24:6905–6916

    Article  CAS  Google Scholar 

  • Essumang DK (2009) Levels of cobalt and silver in water sources in a mining area in Ghana. Int J Biol Chem Sci 3:1437–1444

    Google Scholar 

  • Filella M (2010) How reliable are environmental data on “orphan elements?” The case of bismuth concentrations in surface waters. J Environ Monit 12:90–109

    Article  CAS  Google Scholar 

  • Firth J (2013) Arsenic—the ‘poison of kings’ and the ‘saviour of syphilis’. J Mil Vet Health 21:11–17

    Google Scholar 

  • Flegal AR, Patterson CC (1985) Concentrations of thallium in seawater. Mar Chem 15:327–331

    Article  CAS  Google Scholar 

  • Flegal AR, Rivera-Durarte SA, Sanudo-Wilhelmy SA (1997) Silver contamination in aquatic environments. Rev Environ Contam Toxicol 148:139–162

    CAS  Google Scholar 

  • Frattini P (2005) Thallium properties and behaviour—a literature study. Geological survey of Finland. http://tupa.gtk.fi/raportti/arkisto/s41_0000_2005_2.pdf

  • Fries L (1982) Vanadium an essential element for some marine macroalgae. Planta 154:393–396

    Article  CAS  Google Scholar 

  • Gaillardet J, Viers J, Duprèe B (2003) Trace elements in river waters. In: Turekian K, Holland H (eds) Treatise on geochemistry. Elsevier, Amsterdam, pp 5–9

    Google Scholar 

  • Gary JE, Theodorakos PM, Fey DL, Krabbenhoft DP (2015) Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA. Environ Geochem Health 37:35–48

    Article  Google Scholar 

  • Gensemer RW, Playle RC (2010) The bioavailability and toxicity of aluminum in aquatic environments. Crit Rev Environ Sci Tech 29:315–450

    Article  Google Scholar 

  • Goldberg ED (1963) The oceans as a chemical system. In: Hill MN (ed) Composition of sea water, comparative and descriptive oceanography, Vol II. The sea. Wiley, New York

    Google Scholar 

  • Goldman CR (1972) The role of minor nutrients in limiting the productivity of aquatic ecosystems. In Likens GE (ed) Nutrients and eutrophication: the limiting-nutrients controversy. Lim Ocean Spec Sym 1:21–33

    CAS  Google Scholar 

  • Guo T, Delaune RD, Patrick WH (1997) The effect of sediment redox chemistry on solubility/chemically active forms of selected metals in bottom sediment receiving produced water discharge. Spill Sci Tech Bull 4:165–175

    Article  CAS  Google Scholar 

  • Hamilton SJ (2004) Review of selenium toxicity in the aquatic food chain. Sci Total Environ 326:1–31

    Article  CAS  Google Scholar 

  • Heijerick DG, Carey S (2017) The toxicity of molybdate to freshwater and marine organisms. III. Generating additional chronic toxicity data for the refinement of safe environmental exposure concentrations in the US and Europe. Sci Total Environ 609:420–428

    Article  CAS  Google Scholar 

  • Hem JD (1970) Study and interpretation of the chemical characteristics of natural water. Water-supply paper 1473, United States Geological Survey, United States Government Printing Office, Washington

    Google Scholar 

  • Hem JD (1985) Study and interpretation of the chemical characteristics of natural water. Water-supply paper 2254, United States Geological Survey, United States Government Printing Office, Washington

    Google Scholar 

  • Hem JD, Roberson CE (1967) Form and stability of aluminum hydroxide complexes in dilute solution. Water-supply paper 1827-A, United States Geological Survey, United States Government Printing Office, Washington

    Google Scholar 

  • Howarth RS, Sprague JB (1978) Copper lethality to rainbow trout in waters of various hardness and pH. Water Res 12:455–462

    Article  CAS  Google Scholar 

  • Howe P, Watts P (2003) Tin and inorganic tin compounds. Concise International Chemical Assessment Document 65, World Health Organization, Geneva

    Google Scholar 

  • Hyenstrand P, Rydin E, Gunnerhed M (2000) Response of pelagic cyanobacteria to iron additions—enclosure experiments from Lake Erken. J Plankton Res 22:1113–1126

    Article  CAS  Google Scholar 

  • IRSN (Institut de Radioprotection et de Sûretè Nuclèaire) (2012) Natural uranium in the environment. https://www.irsn.fr/EN/Research/publications-documentation/radionuclides-sheets/environment/Pages/Natural-uranium-environment.aspx

  • Izbicki JA, Ball JW, Bullen TD, Sutley SJ (2008) Chromium, chromium isotopes and selected trace elements, western Mojave Desert, USA. Appl Geochem 23:1325–1352

    Article  CAS  Google Scholar 

  • Jaszczak E, Palkowska Z, Narkowicz S, Namieśnik J (2017) Cyanides in the environment—analysis—problems—challenges. Environ Sci Pollut Res 24:15929–15948

    Article  CAS  Google Scholar 

  • Jones DA (1998) Why are so many plant foods cyanogenic? Phytochemistry 47:155–162

    Article  CAS  Google Scholar 

  • Karbowska B (2016) Presence of thallium in the environment: sources of contaminations, distribution, and monitoring methods. Environ Monit Assess 188:640

    Article  Google Scholar 

  • Khan T, Mohammad S, Khan B, Khan H (2011) Investigating the levels of heavy metals in surface water of Shah Alam River (a tributary of River Kabul, Khyber Pakhtunkhwa). Asian J Earth Sci 44:71–79

    Google Scholar 

  • Kochkodan V, Darwish NB, Hilal N (2015) The chemistry of boron in water. In: Kabay N, Hilal N, Bryak M (eds) Boron separation processes. Elsevier, The Netherlands, pp 35–62

    Chapter  Google Scholar 

  • Kopp JF (1969) The occurrence of trace elements in water. In: Hemphill DD (ed) Proceedings of the Third Annual Conference on Trace Substances in Environmental Health. University of Missouri, Columbia, pp 59–79

    Google Scholar 

  • Kopp JF, Kroner RC (1967) Trace metals in waters of the United States. A five year summary of trace metals in rivers and lakes of the United States (October 1, 1962 to September 30, 1967). United States Department of the Interior, Federal Water Pollution Control Administration, Cincinnati

    Google Scholar 

  • Kopp JF, Kroner RC (1970) Trace metals in waters of the United States. Report PB-215680. Federal Water Pollution Control Administration, Cincinnati

    Google Scholar 

  • Korečková-Sysalová J (1997) Determination of beryllium in natural waters using atomic absorption spectrometry with tantalum-coated graphite tube. Int J Environ Anal Chem 68:397–404

    Article  Google Scholar 

  • Lane TW, Morel FMM (2000) A biological function for cadmium in marine diatoms. Proc Natl Acad Sci 97:4627–4631

    Article  CAS  Google Scholar 

  • Laveroch MJ, Stephenson M, Macdonald CR (1995) Toxicity of iodine, iodide, and iodate to Daphnia magna and rainbow trout (Oncorhynchus mykiss). Arch Environ Con Toxicol 29(3):344–350

    Article  Google Scholar 

  • Lee JG, Roberts SB, Morel FMM (1995) Cadmium: a nutrient for the marine diatom Thelassiosira weissflogii. Limnol Oceanogr 40:1056–1063

    Article  CAS  Google Scholar 

  • Lindemann MD, Cho JH, Wang MQ (2009) Chromium—an essential mineral. Rev Colom de Cien Pec 22:339–445

    Google Scholar 

  • Livingstone DA (1963) Chemical composition of rivers and lakes. Professional Paper 440-G, United States Geological Survey, United States Government Printing Office, Washington

    Google Scholar 

  • Magazinovic RS, Nicholson BC, Mulcahy DE, Davey DE (2004) Bromide levels in natural waters: its relationship to chloride and total dissolved solids and the implications for water treatment. Chemosphere 57:329–335

    Article  CAS  Google Scholar 

  • McBride MB (1989) Reactions controlling heavy metal solubility in soils. In: Stewart BA (ed) Advances in soil science. Springer, New York, pp 1–56

    Google Scholar 

  • McNevin AA, Boyd CE (2004) Copper concentrations in channel catfish, Ictalurus punctatus, ponds treated with copper sulfate. J World Aquacult Soc 35:16–24

    Article  Google Scholar 

  • Moore GT, Kellerman KF (1905) Copper as an algicide and disinfectant in water supplies. Bull Bur Ind 76:19–55

    Google Scholar 

  • Mu Y, Wu F, Chen C, Liu Y, Zhao X, Liao H, Giesy JP (2014) Predicting criteria continuous exposure concentrations of 34 metals or metalloids by use of quantitative ion character-activity relationships-species sensitivity distributions (QICAR-SSD) model. Environ Pollut 188:50–55

    Article  CAS  Google Scholar 

  • Nadis S (1998) Fertilizing the sea. Sci Am 177:33

    Article  Google Scholar 

  • Nagpal NK (2004) Technical report-water quality guidelines for cobalt. Ministry of Water, Land, and Air Protection, Victoria

    Google Scholar 

  • Ning L, Liyuan Y, Jirui D, Xugui P (2011) Heavy metal pollution in surface water of Linglong gold mining area, China. Procedia Environ Sci 10:914–917

    Article  Google Scholar 

  • Pagenkopf GK (1978) Introduction to natural water chemistry. Marcel Dekker, Inc., New York

    Google Scholar 

  • Pais I, Jones JB Jr (1997) The handbook of trace elements. Saint Lucie Press, Boca Raton

    Google Scholar 

  • Palmer CA, Gilbert JA (2012) Position of the Academy of Nutrition and Dietetics: the impact of fluoride on health. J Acad Nutr Diet 112:1443–1453

    Article  CAS  Google Scholar 

  • Pinsino A, Matranga V, Roccheri MC (2012) Manganese: a new emerging contaminant in the environment. In: Srivastava J (ed) Environmental contamination. InTech Europe, Rijeka, pp 17–36

    Google Scholar 

  • Puntoriero ML, Volpedo AJ, Fernandez-Cirelli A (2014) Arsenic, fluoride, and vanadium in surface water (Chasicó Lake, Argentina). Front Environ Sci 2:1–5

    Article  Google Scholar 

  • Reimer PS (1988) Environmental effects of manganese and proposed freshwater guidelines to protect aquatic life in British Columbia. Thesis, University of British Columbia

    Google Scholar 

  • Ryan D (1992) Minor elements in seawater. In: Millero FJ (ed) Chemical oceanography. CRC Press, Boca Raton, pp 89–119

    Google Scholar 

  • Schiffer S, Karsten L (2017) Estimation of vanadium water quality benchmarks for protection of aquatic life with reference to the Athabasca Oil Sands region using species sensitivity distributions. Environ Toxicol Chem 36:3034–3044

    Article  CAS  Google Scholar 

  • Seker S, Kutler B (2014) Determination of copper (Cu) levels for rivers in Tunceli, Turkey. World Environ 4:168–171

    Google Scholar 

  • Sheppard SC, Sheppard NI, Gallerand MO, Sanipelli B (2005) Deviation of ecotoxicity thresholds for uranium. J Environ Radioact 79:55–83

    Article  Google Scholar 

  • Sillén LG, Martell AE (1964) Stability constants for metal-ion complexes. Special Publication 17, Chemical Society, London

    Google Scholar 

  • Sillén LG, Martell AE (1971) Stability constants of metal-ion complexes. Special Publication 25, Chemical Society, London

    Google Scholar 

  • Shiraishi K, Igarashi Y, Yamamoto M, Nakajima T, Los IP, Zelensky AV, Buzinny MZ (1994) Concentrations of thorium and uranium in freshwater samples collected in the former USSR. J Radioanal Nucl Chem 185:157–165

    Article  CAS  Google Scholar 

  • Spears JW (1984) Nickel as a “newer trace element” in the nutrition of domestic animals. J Anim Sci 59:823–835

    Article  CAS  Google Scholar 

  • Stralberg E, Varskog ATS, Raaum A, Varskog P (2003) Naturally occurring radio-nuclides in the marine environment—an overview by current knowledge with emphasis on the North Sea area. Norse Decom AS, Kjeller, Norway

    Google Scholar 

  • Thoenen T, Hummel (2007) The PSI/Nogra chemical thermodynamic database (Update of the Nagra/PSI TDB 01/01: data selection for uranium. Paul Scherrer Institute

    Google Scholar 

  • Turekian KK (1968) Oceans. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • USEPA (1986) Quality criteria for water. EPA 440/S-86-001. USEPA Office of Water, Washington

    Google Scholar 

  • USEPA (2004) National recommended water quality criteria. USEPA Office of Water, Washington

    Google Scholar 

  • USEPA (2007) Aquatic life ambient freshwater quality criteria: copper, EPA 822-R-07-001. http://www.epa.gov/waterscience/criteria/copper/index.htm

  • USEPA (2016) Aquatic life ambient water quality criterion for selenium—freshwater. USEPA Office of Water, Washington

    Google Scholar 

  • USEPA (2018) Aquatic life criteria and methods for toxics. https://www.epa.gov/wqc/aquatic-life-criteria-and-methods-toxics

  • Uthus EO (1992) Evidence for arsenic essentiality. Environ Geochem Health 14:55–58

    Article  CAS  Google Scholar 

  • Vrede T, Tranvik LJ (2006) Ion constraints on planktonic primary production in oligotrophic lakes. Ecosystems 9:1094–1105

    Article  CAS  Google Scholar 

  • Wentz DA, Brigham ME, Chasar LC, Lutz MA, Krabbenholf DP (2014) Mercury in the nation’s steams—levels, trends, and implications. Circular 1395, US Geological Survey, Washington

    Google Scholar 

  • Wisniak J (2002) The history of bromine from discovery to commodity. Indian J Chem Technol 9:262–271

    Google Scholar 

  • World Health Organization (2011) Selenium in drinking water. WHO/HSE/WSH/10.01/14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boyd, C.E. (2020). Micronutrients and Other Trace Elements. In: Water Quality. Springer, Cham. https://doi.org/10.1007/978-3-030-23335-8_17

Download citation

Publish with us

Policies and ethics