Skip to main content

Extreme Latent Representation Learning for Visual Classification

  • Conference paper
  • First Online:
  • 354 Accesses

Part of the book series: Proceedings in Adaptation, Learning and Optimization ((PALO,volume 11))

Abstract

Representational learning using Extreme Learning Machine (ELM) theory has aroused lots of interest. Motivated by recent advance in ELM, this paper presents a novel Extreme Latent Representation (ELR) learning model to seamlessly connect original perception data and the corresponding high-level semantics. Specifically, ELM and ELM based auto-encoder (ELM-AE) are formulated in a unified learning model with both classification and reconstructive ability of the representation considered. ELR inherits the merits of ELM and ELM-AE, and discriminative and compact representation can be learnt with data information well preserved. Furthermore, an efficient algorithm based on alternating direction method of multipliers (ADMM) is developed to solve the resulting ELR model. The performance of ELR is verified on two visual classification tasks, and encouraging results have are achieved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  2. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  3. Fan, Z., Xu, Y., Zhang, D.: Local linear discriminant analysis framework using sample neighbors. IEEE Trans. Neural Netw. 22(7), 1119–1132 (2011)

    Article  Google Scholar 

  4. Guo, T., Tan, X., Zhang, L., et al.: Learning robust weighted group sparse graph for discriminant visual analysis. Neural Process. Lett. 2, 1–24 (2018)

    Google Scholar 

  5. Liu, G., Lin, Z., Yan, S., et al.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)

    Article  Google Scholar 

  6. Zhang, Z., Xu, Y., Shao, L., et al.: Discriminative block-diagonal representation learning for image recognition. IEEE Trans. Neural Netw. Learn. Syst. PP(99), 1–15 (2017)

    Google Scholar 

  7. Li, S., Fu, Y.: Learning robust and discriminative subspace with low rank constraints. IEEE Trans. Neural Netw. Learn. Syst. 27(11), 2160–2173 (2016)

    Article  MathSciNet  Google Scholar 

  8. Li, Y., Liu, J., Lu, H., et al.: Learning robust face representation with classwise block-diagonal structure. IEEE Trans. Inf. Forensics Secur. 9(12), 2051–2062 (2017)

    Article  Google Scholar 

  9. Fang, X., Teng, S., Lai, Z., et al.: Robust latent subspace learning for image classification. IEEE Trans. Neural Netw. Learn. Syst, PP(99), 1–14 (2017)

    Google Scholar 

  10. Zhang, Q., Li, B.: Discriminative K-SVD for dictionary learning in face recognition. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2691–2698 (2010)

    Google Scholar 

  11. Jiang, Z., Lin, Z., Davis, L.S.: Label consistent K-SVD: learning a discriminative dictionary for recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2651–2664 (2013)

    Article  Google Scholar 

  12. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  13. Huang, G., Huang, G.-B., Song, S., Youa, K.: Trends in extreme learning machines: a review. Neural Netw. 61(C), 32–48 (2015)

    Article  Google Scholar 

  14. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. B Cybern. 42(2), 513–529 (2012)

    Article  Google Scholar 

  15. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Article  Google Scholar 

  16. Huang, G., Song, S., Gupta, J., Wu, C.: Semi-supervised and unsupervised extreme learning machines. IEEE Trans. Cybern. 44(12), 2405 (2014)

    Article  Google Scholar 

  17. Kasun, L.L., Yang, Y., Huang, G.B., et al.: Dimension reduction with extreme learning machine. IEEE Trans. Image Process. 25(8), 3906–3918 (2016)

    Article  MathSciNet  Google Scholar 

  18. Zhang, L., Zhang, D.: Robust visual knowledge transfer via extreme learning machine based domain adaptation. IEEE Trans. Image Process. 25(10), 4959–4973 (2016)

    Article  MathSciNet  Google Scholar 

  19. Zhang, L., Zhang, D.: Domain adaptation extreme learning machines for drift compensation in E-Nose systems. IEEE Trans. Instrum. Meas. 64(7), 1790–1801 (2015)

    Article  Google Scholar 

  20. Zhang, L., Zhang, D.: Evolutionary cost-sensitive extreme learning machine. IEEE Trans. Neural Netw. Learn. Syst. 28(12), 3045–3060 (2017)

    Article  MathSciNet  Google Scholar 

  21. Tang, J., Deng, C., Huang, G.B.: Extreme learning machine for multilayer perceptron. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 809–821 (2016)

    Article  MathSciNet  Google Scholar 

  22. Bartels, R.H., Stewart, G.W.: Solution of the matrix equation AX + XB = C [F4]. Commun. ACM 15(9), 820–826 (1972)

    Article  Google Scholar 

  23. Cai, D., He, X., Han, J., Zhang, H.-J.: orthogonal laplacianfaces for face recognition. IEEE Trans. Image Process. 15(11), 3608–3614 (2006)

    Article  Google Scholar 

  24. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  25. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 61771079, 61571069, 61801072), the Science and Technology Research Program of Chongqing Municipal Education Commission (No. KJQN201800632, KJQN201800617), and Foundation and Frontier Research Project of Chongqing Municipal Science and Technology Commission (No. cstc2018jcyjAX0344, cstc2018jcyjAX0549, cstc2017zdcy-zdzxX0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tan Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, T., Zhang, L., Tan, X. (2020). Extreme Latent Representation Learning for Visual Classification. In: Cao, J., Vong, C., Miche, Y., Lendasse, A. (eds) Proceedings of ELM 2018. ELM 2018. Proceedings in Adaptation, Learning and Optimization, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-23307-5_8

Download citation

Publish with us

Policies and ethics