Skip to main content

Future Potential of New High T c Iron-Based Superconductors

  • Chapter
  • First Online:
Superconductivity

Abstract

The discovery of iron-based superconductors (FeSCs) was a surprise for the condensed matter community and became the second family of high temperature superconductors. With their attractions of very high upper critical fields and small electromagnetic anisotropy, a lot of research works have been done over past decade in accumulation of a vast amount of knowledge on materials, properties, mechanism, and applications. In this chapter, we have reviewed the current progress based on the technical applications of iron-based superconductors in terms of a future potential candidate. The basic characteristics of superconductors are summarized and define key concepts towards enhancing applied parameters such as transition temperature (T c), upper critical field (H c2), irreversibility field (H *), and critical current density (J c).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. K. Onnes, Comm. Phys. Lab. Uni. Leiden 120b, 122b, 124c (1911).

    Google Scholar 

  2. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008)

    Google Scholar 

  3. H. Hosono et al., Sci. Technol. Adv. Mater. 16, 033503 (2015)

    Google Scholar 

  4. D.C. Johnston, Adv. Phys. 59, 803 (2010)

    Google Scholar 

  5. H. Hosono et al., Mater. Today 21, 278 (2018)

    Google Scholar 

  6. J. Shimoyama, Supercond. Sci. Technol. 27, 044002 (2014)

    Google Scholar 

  7. C. Yao, Y. Ma, Supercond. Sci. Technol. 32, 023002 (2019)

    Google Scholar 

  8. S.J. Singh et al., IEEE Trans. Appl. Supercond. 23, 7300605 (2013)

    Google Scholar 

  9. A. Schilling, M. Cantoni, J.D. Guo, H.R. Ott, Nature 363, 56 (1993)

    Google Scholar 

  10. J.G. Bednorz, K.A. Muller, Z. Phys. 64, 189 (1986)

    Google Scholar 

  11. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63–64 (2001)

    Google Scholar 

  12. H.F. Braun, Phys. Lett. 75A, 386 (1980)

    Google Scholar 

  13. A.W. Graham, M. Kurmoo, P. Day, J. Chem. Soc. Chem. Commun. Issue 20, 2061–2062 (1995)

    Google Scholar 

  14. K. Shimizu, T. Kimura, S. Furomoto, K. Takeda, K. Kontani, Y. Onuki, K. Amaya, Nature 412, 316 (2001)

    Google Scholar 

  15. C.W. Chu, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Science 235, 567 (1987)

    Google Scholar 

  16. M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, Phys. Rev. Lett. 58, 908 (1987)

    Google Scholar 

  17. H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, H. Hosono, Nature 453, 376 (2008)

    Google Scholar 

  18. X.H. Chen, T. Wu, G. Wu, R.H. Liu, H. Chen, D.F. Fang, Nature 453, 761 (2008)

    Google Scholar 

  19. Z.A. Ren, G.-C. Che, X.L. Dong, J. Yang, W. Lu, W. Yi, X.-L. Shen, Z.-C. Li, L.L. Sun, F. Zhou, Z.X. Zhao, Europhys Phys Lett 83, 17002 (2008)

    Google Scholar 

  20. D. N. Basov and Andrey V. Chubukov, Nature Physics 7, 272–276 (2011)

    Google Scholar 

  21. C. Buzea, T. Yamashita, Supercond. Sci. Technol. 14, R115 (2001)

    Google Scholar 

  22. M. Tinkham, Introduction to Superconductivity, 2nd edn. (McGraw-Hill, New York, 1996)

    Google Scholar 

  23. M. Campbell, J.E. Evetts, Adv. Phys. 21, 199 (1972)

    Google Scholar 

  24. H. Suhl, B.T. Matthias, L.R. Walker, Phys. Rev. Lett. 3, 552 (1959)

    Google Scholar 

  25. V. Guritani et al., Phys. Rev. B 70, 184526 (2004)

    Google Scholar 

  26. A.Y. Liu, I.I. Mazin, J. Kortus, Phys. Rev. Lett. 87, 087005 (2001)

    Google Scholar 

  27. S.V. Shulga et al., Phys. Rev. Lett. 80, 1730–1733 (1998)

    Google Scholar 

  28. Y. Yokoya et al., Science 294, 2518–2520 (2001)

    Google Scholar 

  29. E. Boaknin et al., Phys. Rev. Lett. 90, 117003 (2003)

    Google Scholar 

  30. A.P. Petrović et al., Phys. Rev. Lett. 106, 017003 (2011)

    Google Scholar 

  31. F. Wang, D.-H. Lee, Science 332, 200 (2011)

    Google Scholar 

  32. D.J. Singh, M.-H. Du, Phys. Rev. Lett. 100, 237003 (2008)

    Google Scholar 

  33. R.A. Jishi, H.M. Alyahyaei, New J. Phys. 11, 083030 (2009)

    Google Scholar 

  34. I.I. Mazin, D.J. Singh, M.D. Johannes, M.H. Du, Phys. Rev. Lett. 101, 057003 (2008)

    Google Scholar 

  35. H. Ding, P. Richard, K. Nakayama, K. Sugawara, T. Arakane, Y. Sekiba, A. Takayama, S. Souma, T. Sato, T. Takahashi, Z. Wang, X. Dai, Z. Fang, G.F. Chen, J.L. Luo, N.L. Wang, Europhys. Lett. 83, 47001 (2008)

    Google Scholar 

  36. A. Gurevich, Rep. Prog. Phys. 74, 124501 (2011)

    Google Scholar 

  37. K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, H. Aoki, Phys. Rev. Lett. 101, 087004 (2008)

    Google Scholar 

  38. I.I. Mazin, J. Schmalian, Phys. C 469, 614 (2009)

    Google Scholar 

  39. W.Q. Chen, K.Y. Yang, Y. Zhou, F.C. Zhang, Phys. Rev. Lett. 102, 047006 (2009)

    Google Scholar 

  40. A. V. Pogrebnyakov, X. X. Xi, J. M. Redwing, V. Vaithyanathan, D. G. Schlom, A. Soukiassian, S. B. Mi, C. L. Jia, J. E. Giencke, C. B. Eom, J. Chen, Y. F. Hu, Y. Cui, Qi Li, Appl. Phys. Lett. 85, 2017 (2004)

    Google Scholar 

  41. N.R. Werthamer, E. Helfand, P.C. Hohenberg, Phys. Rev. 147, 295 (1966)

    Google Scholar 

  42. A.M. Clogston, Phys. Rev. Lett. 9, 266 (1962)

    Google Scholar 

  43. B.S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962)

    Google Scholar 

  44. K. Maki, Phys. Rev. B 148, 362 (1962)

    Google Scholar 

  45. A. Fulde, R.A. Ferrel, Phys. Rev. 135, A550 (1964)

    Google Scholar 

  46. L.W. Grunberg, L. Gunther, Phys. Rev. Lett. 16, 996 (1966)

    Google Scholar 

  47. A. Gurevich, Phys. Rev. B 67, 184515 (2003)

    Google Scholar 

  48. F. Hunte et al., Nature 453, 903–905 (2008)

    Google Scholar 

  49. J. Jaroszynski et al., Phys. Rev. B 78, 064511 (2008)

    Google Scholar 

  50. H. Yuan, Q et al. Nature 457, 565–568 (2009)

    Google Scholar 

  51. K. Cho et al., Phys. Rev. B 82, 060502(R) (2011)

    Google Scholar 

  52. T. Klein et al., Phys. Rev. B 82, 184506 (2010)

    Google Scholar 

  53. P. Fulde, R.A. Ferrel, Phys. Rev. 135, A550–A563 (1964)

    Google Scholar 

  54. A.I. Larkin, N. Ovchinnikov Yu, Zh. Exp. Teor. Fiz 47, 1136–1146 (1964)

    Google Scholar 

  55. A.I. Larkin, N. Ovchinnikov Yu, Sov. Phys. JETP 20, 762–769. (Engl. transl.) (1965)

    Google Scholar 

  56. A. Bianchi, R. Movshovich, C. Capan, P.G. Pagliuso, J.L. Sarrao, Phys. Rev. Lett. 91, 187004 (2003)

    Google Scholar 

  57. M. Radovan et al., Nature 425, 51–55 (2003)

    Google Scholar 

  58. M. Kenzelmann et al., Science 321, 1652–1654 (2008)

    Google Scholar 

  59. S. Uji et al., Phys. Rev. Lett. 97, 15701 (2006)

    Google Scholar 

  60. S. Yonezawa et al., Phys. Soc. Jpn. 77, 054712 (2008)

    Google Scholar 

  61. L.N. Bulaevskii, A.A. Guseinov, Sov. J. Low. Temp. Phys. 2, 140 (1976)

    Google Scholar 

  62. A. Gurevich, Phys. Rev. B 82, 184504 (2010)

    Google Scholar 

  63. S.J. Singh et al., Phys. Rev. Mater. 2, 074802 (2018)

    Google Scholar 

  64. W.R. Meier et al., Phys. Rev. B 94, 064501 (2016)

    Google Scholar 

  65. A. Iyo et al., J. Am. Chem. Soc. 138, 3410 (2016)

    Google Scholar 

  66. T.P. Orlando et al., Phys. Rev. B 36, 2394 (1987)

    Google Scholar 

  67. P.P. Nguyen et al., Phys Rev B 48, 1148 (1993)

    Google Scholar 

  68. J.S. Moodera et al., Phys. Rev. B 37, 619 (1988)

    Google Scholar 

  69. T.T.M. Palstra et al., Phys. Rev. B 38, 5102 (1988)

    Google Scholar 

  70. M.J. Naughton et al., Phys. Rev. B 38, 9280 (1988)

    Google Scholar 

  71. M. Putti et al., Supercond. Sci. Technol. 23, 034003 (2010)

    Google Scholar 

  72. G. Blatter, M.V. Feigelman, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Rev. Mod. Phys. 66, 1125–1388 (1994)

    Google Scholar 

  73. E.H. Brandt, Rep. Prog. Phys. 58, 1465–1594 (1995)

    Google Scholar 

  74. T. Katase, H. Hiramatsu, T. Kamiya, H. Hosono, Appl. Phys. Exp. 3, 063101 (2010)

    Google Scholar 

  75. A. Yamamoto et al., Supercond. Sci. Technol. 21, 095008 (2008)

    Google Scholar 

  76. F. Kametani et al., Appl. Phys. Lett. 95, 142502 (2009)

    Google Scholar 

  77. S.J. Singh et al., Supercond. Sci. Technol. 26, 065006 (2013)

    Google Scholar 

  78. S.J. Singh et al., Supercond. Sci. Technol. 28, 025006 (2015)

    Google Scholar 

  79. S. Lee et al., Appl. Phys. Lett. 95, 212505 (2009)

    Google Scholar 

  80. S. Heindl et al., Phys. Rev. Lett. 104, 077001 (2010)

    Google Scholar 

  81. E.F. Talantsev, W.P. Crump, Supercond. Sci. Technol. 31, 124001 (2018)

    Google Scholar 

  82. M.D. Lan et al., Phys. Rev. B 44, 233 (1991)

    Google Scholar 

  83. N.D. Zhigadlo et al., J. Phys. Condens. Matter 20, 342202 (2008)

    Google Scholar 

  84. P.J.W. Moll et al., Nat.Mater. 9, 628 (2010)

    Google Scholar 

  85. H. Yang et al., Appl. Phys. Lett. 93, 142506 (2008)

    Google Scholar 

  86. R. Prozorov et al., Phys. Rev. B 78, 224506 (2008)

    Google Scholar 

  87. T. Taen et al., Phys. Rev. B 80, 092502 (2009)

    Google Scholar 

  88. Y. Nakajima et al., Phys. Rev. B 80, 012510 (2009)

    Google Scholar 

  89. M. Eisterer et al., Supercond. Sci. Technol. 22, 095011 (2009)

    Google Scholar 

  90. X.X. Xi, Supercond. Sci. Technol. 22, 043001 (2009)

    Google Scholar 

  91. B. Dam et al., Nature 399, 439 (1999)

    Google Scholar 

  92. K. Iida et al., Arxiv 1812.10264 (2018).

    Google Scholar 

  93. I. Pallecchi et al., Phys. C 482, 68 (2012)

    Google Scholar 

  94. M.A. Tanatar et al., Phys. Rev. B 79, 094507 (2009)

    Google Scholar 

  95. C. Tarantini et al., Appl. Phys. Lett. 96, 142510 (2010)

    Google Scholar 

  96. Santhanam et al., Sci. News 131, 308 (1987)

    Google Scholar 

  97. N.D. Zhigadlo, S. Katrych, Z. Bukowski, S. Weyeneth, R. Puzniak, J. Karpinski, J. Phys. Condens. Mater. 20, 342202 (2008)

    Google Scholar 

  98. A. Yamamoto, L. Balicas, J. Jaroszynski, C. Tarantini, J. Jiang, A. Gurevich, D.C. Larbalestier, R. Jin, A.S. Sefat, M.A. McGuire, B.C. Sales, D.K. Christen, D. Mandrus, Appl. Phys. Lett. 94, 062511 (2009)

    Google Scholar 

  99. J.H. Durrell et al., Rep. Prog. Phys. 74, 124511 (2011)

    Google Scholar 

  100. K.-H. Muller, C. Andrikidis, H. K. Liu and S. X. Dou, Phys. Rev. B 50 (1994) 10218

    Google Scholar 

  101. L. Wang, Z. Gao, Y. Qi, X. Zhang, D. Wang, Y. Ma, Supercond. Sci. Technol. 22, 015019 (2009)

    Google Scholar 

  102. S. Graser et al., Nat. Phys. 6, 609 (2010)

    Google Scholar 

  103. D.C. Larbalestier et al., Nature 410, 186 (2001)

    Google Scholar 

  104. S.J. Singh et al., Phys. C 529, 8–20 (2016)

    Google Scholar 

  105. Y. Ma, Supercond. Sci. Technol. 25, 113001 (2012)

    Google Scholar 

  106. Y.C. Zhu et al., Supercond. Sci. Technol. 31, 06LT02 (2018)

    Google Scholar 

  107. Y.P. Qi, X.P. Zhang, Z.S. Gao, Z.Y. Zhang, L. Wang, D.L. Wang, Y.W. Ma, Phys. C 469, 717 (2009)

    Google Scholar 

  108. R.M. Scanlan et al., Proc. IEEE 92(10), 1639 (2004)

    Google Scholar 

  109. S.J. Singh et al., Supercond. Sci. Technol. 27, 085010 (2014)

    Google Scholar 

  110. C. Dong et al., Scr. Mater. 99, 33 (2015)

    Google Scholar 

  111. X.P. Zhang et al., IEEE Trans. Appl. Supercond. 27(4), 7300705 (2017)

    Google Scholar 

  112. T. Ozaki et al., Supercond. Sci. Technol. 24, 105002 (2011)

    Google Scholar 

  113. Q.P. Ding et al., Supercond. Sci. Technol. 25, 025003 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiv J. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S.J., Mele, P. (2020). Future Potential of New High T c Iron-Based Superconductors. In: Mele, P., et al. Superconductivity. Springer, Cham. https://doi.org/10.1007/978-3-030-23303-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23303-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23302-0

  • Online ISBN: 978-3-030-23303-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics