Skip to main content

Control of Vortex Pinning in YBCO Thin Films by Incorporating APCs Through Surface Modified Target Approach

  • Chapter
  • First Online:
Superconductivity
  • 1133 Accesses

Abstract

The transport of electrical currents in superconductors with much higher efficiency and without any dissipation is considered as the “energy superhighway.” After the discovery of YBa2Cu3O7-δ (YBCO), a high temperature superconductor (HTS), the prospect of using superconducting materials in practical technological applications became very prominent. With much higher T c (~ 92 K) than conventional low temperature superconductors (LTS), YBCO was considered very promising due to cheaper cooling requirements. The evolution of critical current density (J c), however, took long time for the material to become useful in practical applications. This was achieved through continuous modification of the processing parameters, deposition of highly oriented thin films on single crystal and buffered metallic substrates and use of artificial pinning centers (APCs) for strong pinning of quantized magnetic vortices.

Pulsed laser deposition (PLD) technique is one of the most common and highly efficient techniques for depositing highly oriented YBCO thin films on single crystal and buffered metallic substrates. Using PLD technique, APCs are incorporated into YBCO thin films by many methods which include premixed target method, alternating target method and surface modified target method.

In this chapter, the use of surface modified target method to introduce different kinds of APCs into YBCO thin films is presented. These APCs are effective in improving the vortex pinning properties of YBCO thin films for different range of applied magnetic field and its orientation depending upon their geometry and density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, Phys. Rev. Lett. 58, 908 (1987)

    Google Scholar 

  2. H. Maeda, Y. Tanaka, M. Fukutomi, T. Asano, Jpn. J. Appl. Phys. 27, L209 (1988)

    Google Scholar 

  3. A. Schilling, M. Cantoni, J.D. Guo, H.R. Ott, Nature 363, 56 (1993)

    Google Scholar 

  4. D. Larbalestier, A. Gurevich, D.M. Feldmann, A. Polyanskii, Nature 414, 368 (2001)

    Google Scholar 

  5. A.P. Malozemoff, Nat. Mater. 6, 617 (2007)

    Google Scholar 

  6. S.R. Foltyn, L. Civale, J.L. Macmanus-Driscoll, Q.X. Jia, B. Maiorov, H. Wang, M. Maley, Nat. Mater. 6, 631 (2007)

    Google Scholar 

  7. K. Matsumoto, P. Mele, Supercond. Sci. Technol. 23, 014001 (2010)

    Google Scholar 

  8. X. Obradors, T. Puig, Supercond. Sci. Technol. 27, 044003 (2014)

    Google Scholar 

  9. D. Dimos, P. Chaudhari, J. Mannhart, Phys. Rev. B 41, 4038 (1990)

    Google Scholar 

  10. S. Jin, T.H. Tiefel, R.C. Sherwood, R.B. van Dover, M.E. Davis, G.W. Kammlott, R.A. Fastnacht, Phys. Rev. B 37, 7850 (1988)

    Google Scholar 

  11. M. Murakami (ed.), Melt-Processed High-Temperature Superconductors (World Scientific, Singapore, 1992)

    Google Scholar 

  12. D. Dijkkamp, T. Venkatesan, X.D. Wu, S.A. Shaheen, N. Jisrawi, Y.H. Min-Lee, W.L. McLean, M. Croft, Appl. Phys. Lett. 51, 619 (1987)

    Google Scholar 

  13. B. Schey, Chapter 14 in Pulsed Laser Deposition of Thin Films”, by R. Eason (Ed.), Wiley, New Jersey, pp. 313–331 (2007)

    Google Scholar 

  14. M. Miura, Chapter 5 in Oxide Thin Films, Multilayers, and Nanocomposites”, by P. Mele, T. Endo, S. Arisawa, C. Li and T. Tsuchiya (Eds.), Springer, Cham, pp. 3–26 (2015)

    Google Scholar 

  15. A. Ignatiev, Chapter 15 in Second-Generation HTS Conductors”, by A. Goyal (Ed.), Kluwer Academic Publishers, Dordrecht, pp. 245–259 (2005)

    Google Scholar 

  16. D. B. Chrisey, G. K. Hubler (eds.), Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994)

    Google Scholar 

  17. R.K. Singh, D. Kumar, Mat. Sci. Eng. R 22, 113 (1998)

    Google Scholar 

  18. T. Matsushita, Flux Pinning in Superconductors (Springer, Berlin, 2007)

    Google Scholar 

  19. B. Dam, J.M. Huijbregtse, F.C. Klaassen, R.C.F. Van der Geest, G. Doornbos, J.H. Rector, A.M. Testa, S. Freisem, J.C. Martinez, B. Stauble-Pumpin, R. Griessen, Nature 399, 439 (1999)

    Google Scholar 

  20. J.M. Huijbregtse, F.C. Klaassen, A. Szepielow, J.H. Rector, B. Dam, R. Griessen, B.J. Kooi, J.T.M. de Hosson, Supercond. Sci. Technol. 15, 395 (2002)

    Google Scholar 

  21. L. Civale, Supercond. Sci. Technol. 10, A11 (1997)

    Google Scholar 

  22. S.H. Wee, A. Goyal, P.M. Martin, L. Heatherly, Supercond. Sci. Technol. 19, 865 (2006)

    Google Scholar 

  23. C. Cai, B. Holzapfel, J. Hanishch, L. Fernandez, L. Schultz, Phys. Rev. B 69, 104531 (2004)

    Google Scholar 

  24. A.K. Jha, K. Matsumoto, T. Horide, S. Saini, P. Mele, A. Ichinose, Y. Yoshida, S. Awaji, J. Appl. Phys. 122, 093905 (2017)

    Google Scholar 

  25. T. Haugan, P.N. Barnes, R. Wheeler, F. Meisenkothen, M. Sumption, Nature 430, 867 (2004)

    Google Scholar 

  26. A.A. Gapud, D. Kumar, S.K. Viswanathan, C. Cantoni, M. Varela, J. Abiade, S.J. Pennycook, D.K. Christen, Supercond. Sci. Technol. 18, 1502 (2005)

    Google Scholar 

  27. J.L. MacManus Driscoll, S.R. Foltyn, Q.X. Jia, H. Wang, A. Serquis, L. Civale, B. Maiorov, M.E. Hawley, M.P. Maley, D.E. Peterson, Nat. Mater. 3, 439 (2004)

    Google Scholar 

  28. A. Goyal, S. Kang, K.J. Leonard, P.M. Martin, A.A. Gapud, M. Varela, M. Paranthaman, A.O. Ijaduola, E.D. Specht, J.R. Thompson, D.K. Christen, S.J. Pennycook, F.A. List, Supercond. Sci. Technol. 18, 1533 (2005)

    Google Scholar 

  29. P. Mele, K. Matsumoto, A. Ichinose, M. Mukaida, Y. Yoshida, S. Horii, R. Kita, Supercond. Sci. Technol. 21, 125017 (2008)

    Google Scholar 

  30. C.V. Varanasi, J. Burke, H. Wang, J.H. Lee, P.N. Barnes, Appl. Phys. Lett. 93, 092501 (2008)

    Google Scholar 

  31. J. Hanisch, C. Cai, R. Huhne, L. Schultz, B. Holzapfel, Appl. Phys. Lett. 86, 122508 (2005)

    Google Scholar 

  32. D.M. Feldmann, T.G. Holesinger, B. Maiorov, S.R. Foltyn, J.Y. Coulter, I. Apodaca, Supercond. Sci. Technol. 23, 095004 (2010)

    Google Scholar 

  33. S.H. Wee, A. Goyal, Y.L. Zuev, C. Cantoni, V. Selvamanickam, E.D. Specht, Appl. Phys. Exp. 3, 023101 (2010)

    Google Scholar 

  34. S.H. Wee, A. Goyal, E.D. Specht, C. Cantoni, Y.L. Zuev, V. Selvamanickam, S. Cook, Phys. Rev. B 81, 140503 (2010)

    Google Scholar 

  35. C. Varanasi, P.N. Barnes, J. Burke, J. Carpenter, T. Haugan, Appl. Phys. Lett. 87, 262510 (2005)

    Google Scholar 

  36. P. Mele, K. Matsumoto, T. Horide, A. Ichinose, M. Mukaida, Y. Yoshida, S. Horii, Supercond. Sci. Technol. 20, 616 (2007)

    Google Scholar 

  37. P. Mele, K. Matsumoto, T. Horide, A. Ichinose, M. Mukaida, Y. Yoshida, S. Horii, Supercond. Sci. Technol. 20, 244 (2007)

    Google Scholar 

  38. T. Horide, K. Matsumoto, A. Ichinose, M. Mukaida, Y. Yoshida, S. Horii, Supercond. Sci. Technol. 20, 303 (2007)

    Google Scholar 

  39. M. Tachiki, S. Takahashi, Sol. St. Comm. 70, 291 (1989)

    Google Scholar 

  40. M. Tachiki, S. Takahashi, Sol. St. Comm. 72, 1083 (1989)

    Google Scholar 

  41. L. Civale, B. Maiorov, A. Serquis, J.O. Willis, J.Y. Coulter, H. Wang, Q.X. Jia, P.N. Arendt, J.L. MacManus Driscoll, M.P. Maley, S.R. Foltyn, Appl. Phys. Lett. 84, 2121 (2004)

    Google Scholar 

  42. S.K. Viswanathan, A.A. Gapud, M. Varela, J.T. Abiade, D.K. Christen, S.J. Pennycook, D. Kumar, Thin Solid Films 515, 6452 (2007)

    Google Scholar 

  43. P. Mele, R. Guzman, J. Gazquez, T. Puig, X. Obradors, S. Saini, Y. Yoshida, M. Mukaida, A. Ichinose, K. Matsumoto, M.I. Adam, Supercond. Sci. Technol. 28, 024002 (2015)

    Google Scholar 

  44. C.V. Varanasi, P.N. Barnes, J. Burke, L. Brunke, I. Maartense, T.J. Haugan, E.A. Stinzianni, K.A. Dunn, P. Haldar, Supercond. Sci. Technol. 19, L37 (2006)

    Google Scholar 

  45. C.V. Varanasi, J. Burke, L. Brunke, H. Wang, M. Sumption, P.N. Barnes, J. Appl. Phys. 102, 063909 (2007)

    Google Scholar 

  46. P. Mele, K. Matsumoto, T. Horide, A. Ichinose, M. Mukaida, Y. Yoshida, S. Horii, Physica C 463-465, 653 (2007)

    Google Scholar 

  47. A.K. Jha, K. Matsumoto, T. Horide, S. Saini, P. Mele, Y. Yoshida, S. Awaji, Supercond. Sci. Technol. 27, 025009 (2014)

    Google Scholar 

  48. P. Mele, K. Matsumoto, T. Horide, A. Ichinose, M. Mukaida, Y. Yoshida, S. Horii, R. Kita, Physica C 468, 1631 (2008)

    Google Scholar 

  49. P. Mele, K. Matsumoto, T. Horide, A. Ichinose, M. Mukaida, Y. Yoshida, S. Horii, R. Kita, Supercond. Sci. Technol. 21, 015019 (2008)

    Google Scholar 

  50. A.K. Jha, K. Matsumoto, T. Horide, S. Saini, P. Mele, Y. Yoshida, S. Awaji, IEEE Trans. Appl. Supercond. 25, 8000505 (2015)

    Google Scholar 

  51. A.K. Jha, K. Matsumoto, T. Horide, S. Saini, P. Mele, A. Ichinose, Y. Yoshida, S. Awaji, Supercond. Sci. Technol. 28, 114004 (2015)

    Google Scholar 

  52. A.K. Jha, K. Matsumoto, T. Horide, S. Saini, P. Mele, A. Ichinose, Y. Yoshida, S. Awaji, IEEE Trans. Appl. Supercond. 26, 8000404 (2016)

    Google Scholar 

  53. J. Gutierrez, A. Llordes, J. Gazquez, M. Gibert, N. Roma, S. Ricart, A. Pomar, F. Sandiumenge, N. Mestres, T. Puig, X. Obradors, Nat. Mater. 6, 367 (2007)

    Google Scholar 

  54. C.V. Thompson, Annu. Rev. Mater. Sci. 30, 159–190 (2000)

    Google Scholar 

  55. A. Sutton, R. Balluffi, Interfaces in Crystalline Materials (Oxford Univ. Press, Oxford, 1996)

    Google Scholar 

  56. J. Wu, J. Shi, Supercond. Sci. Technol. 30, 103002 (2017)

    Google Scholar 

Download references

Acknowledgements

We thank T. Horide, S. Saini, P. Mele, A. Ichinose, Y. Yoshida, and S. Awaji for cooperative research on vortex pinning studies in YBCO nanocomposite films.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok K. Jha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jha, A.K., Matsumoto, K. (2020). Control of Vortex Pinning in YBCO Thin Films by Incorporating APCs Through Surface Modified Target Approach. In: Mele, P., et al. Superconductivity. Springer, Cham. https://doi.org/10.1007/978-3-030-23303-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23303-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23302-0

  • Online ISBN: 978-3-030-23303-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics