Skip to main content

Introduction

  • Chapter
  • First Online:
  • 813 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 288))

Abstract

This chapter gives a brief history of thermal treatments in general and flash lamp annealing in particular. It introduces the basic thermodynamic values thermal diffusivity, thermal diffusion length and thermal response time, discusses the concept of thermal budget, and provides a comparison of the three main methods of short time annealing, namely rapid thermal annealing, flash lamp annealing, and laser annealing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. https://www.merriam-webster.com/dictionary/annealing. Accessed 19 Sept 2017

  2. European Standard 10052:1993, Vocabulary of Heat Treatment Terms of Ferrous Products

    Google Scholar 

  3. D. Richter, M. Krbetschek, The age of the lower Paleolithic occupation at Schoningen. J. Hum. Evol. 89, 46–56 (2015). https://doi.org/10.1016/j.jhevol.2015.06.003

    Article  Google Scholar 

  4. G. Schneider, A technological study of North-Mesopotamian stone ware. World Archael. 21, 30 (1989)

    Article  Google Scholar 

  5. A. Bejan, Evolution in thermodynamics. Appl. Phys. Rev. 4(1), 011305 (2017). https://doi.org/10.1063/1.4978611

    Article  ADS  Google Scholar 

  6. http://www.bbc.co.uk/history/historic_figures/newcomen_thomas.shtml. Accessed 19 Sept 2017

  7. http://www.bbc.co.uk/history/historic_figures/watt_james.shtml. Accessed 19 Sept 2017

  8. http://www.bbc.co.uk/history/historic_figures/wedgwood_josiah.shtml. Accessed 19 Sept 2017

  9. http://www.lokodex.de/IO/doku.php?id=geschichte. Accessed 19 Sept 2017

  10. L. Holborn, F. Kurlbaum, Über ein optisches Pyrometer. Sitzungsberichte d. preussischen Akademie d. Wiss. Teil 1, 712 (1901) (in German)

    Google Scholar 

  11. R.T. Staples, Flash annealing of light alloys. J. Inst. Met. 80(6), 323 (1951)

    Google Scholar 

  12. L.T. Kabacoff, M. Wun-Fogle, Magnetomechanical properties of flash annealed Metglas 2605 SC. J. Appl. Phys. 57(8), 3499–3501 (1985). https://doi.org/10.1063/1.335040

    Article  ADS  Google Scholar 

  13. A. Mitra, M. Vazquez, K. Mandal, S.K. Ghatak, Influence of stress and stress-flash annealing on the magnetic properties of amorphous Fe77.5Si7.5B15 wire. J. Appl. Phys. 70, 4455 (1991). https://doi.org/10.1063/1.349102

    Article  ADS  Google Scholar 

  14. C. Morón, M.C. Sánchez, E. López, P. Sánchez, C. Aroca, Effect of high-current flash annealing on amorphous samples. J. Magn. Magn. Mater. 101, 59–61 (1991)

    Article  ADS  Google Scholar 

  15. T. Horubala, R. Masiak, H. Matyja, Microstructural changes in Fe-Si-B and Co-Si-B amorphous alloys upon flash annealing. Key Eng. Mater. 81–83, 323–328 (1993). https://doi.org/10.4028/www.scientific.net/KEM.81-83.323

    Article  Google Scholar 

  16. P.E. Gray, H.E. Edgerton, Phys. Today 44(4), 126–128 (1991). https://doi.org/10.1063/1.2810095

    Article  Google Scholar 

  17. H.E. Edgerton, K.J. Germeshausen, The mercury arc as an actinic stroboscopic light source. Rev. Sci. Instrum. 3, 535 (1932). https://doi.org/10.1063/1.1748867

    Article  ADS  Google Scholar 

  18. P.M. Murphy, H.E. Edgerton, Electrical characteristics of stroboscopic flash lamps. J. Appl. Phys. 12(12), 848–855 (1941). https://doi.org/10.1063/1.1712876

    Article  ADS  Google Scholar 

  19. M.I. Christie, G. Porter, Photochemical studies with the gaseous flash discharge. Proc. R. Soc. London A 212(1110), 390–397 (1952)

    Article  ADS  Google Scholar 

  20. W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott, Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32(9), 1679–1684 (1961). https://doi.org/10.1063/1.1728417

    Article  ADS  Google Scholar 

  21. J.L. Lundberg, L.S. Nelson, High-intensity flash irradiation of polymers. Nature 179(4555), 367 (1957)

    Article  ADS  Google Scholar 

  22. J.L. Lundberg, L.S. Nelson, Initiation of thermal reactions by the flash illumination of absorbing bodies. Nature 183(4675), 1560 (1959). https://doi.org/10.1038/1831560a0

    Article  ADS  Google Scholar 

  23. L.S. Nelson, Intense rapid heating with flash discharge lamps. Science 136, 296 (1962)

    Article  ADS  Google Scholar 

  24. T.H. Maiman, Stimulated optical radiation in ruby. Nature 187(4736), 493 (1960)

    Article  ADS  Google Scholar 

  25. J.M. Fairfield, G.H. Schwuttke, Silicon diodes made by laser irradiation. Solid State Electron. 11(12), 1175 (1968). https://doi.org/10.1016/0038-1101(68)90008-7

    Article  ADS  Google Scholar 

  26. F.E. Harper, M.I. Cohen, Properties of Si diodes prepared by alloying Al into n-type Si with heat pulses from a Nd:YAG laser. Solid State Electron. 13, 1103 (1970)

    Article  ADS  Google Scholar 

  27. G.A. Kachurin, N.B. Pridachin, L.S. Smirnov, Annealing of radiation defects by laser radiation pulses. Sov. Phys. Semicond. 9(7), 946 (1975)

    Google Scholar 

  28. I.B. Khaibullin, V.V. Titov, E.I. Shtyrkoy, M.M. Zaripov, V.P. Stashko, K.P. Kuzmin, Laser annealing of implanted layers, in Proceedings of International Conference on Ion Implantation in Semiconductors, Budapest, 1975, p. 212 (in Russian)

    Google Scholar 

  29. G.A. Kachurin, E.V. Nidaev, A.V. Khodyachikh, L.A. Kovaleva, Annealing of implanted layers by a scanning laser beam. Sov. Phys. Semicond. 10(10), 1128 (1975)

    Google Scholar 

  30. J. Krynicki, J. Suski, S. Ugniewski, R. Grötzschel, R. Klabes, U. Kreissig, J. Rüdiger, Laser annealing of arsenic implanted silicon. Phys. Lett. 61A(3), 181 (1977)

    Article  ADS  Google Scholar 

  31. H.D. Geiler, G. Götz, K.D. Klinge, N. Triem, Investigation of laser induced diffusion and annealing processes of arsenic-implanted silicon crystals, Phys. Stat. Sol. (a) 41, K171 (1977)

    Article  ADS  Google Scholar 

  32. P. Baeri, S.U. Campisano, G. Foti, E. Rimini, Arsenic diffusion in silicon melted by high-power nanosecond laser pulsing. Appl. Phys. Lett. 33(2), 137–140 (1978). https://doi.org/10.1063/1.90283

    Article  ADS  Google Scholar 

  33. G. Battaglin, G. Della Mea, A.V. Drigo, G. Foti, G.G. Bentini, M. Servidori, Two-stage laser annealing of lattice disorder in phosphorus implanted silicon. Phys. Stat. Sol. (a) 49, 347 (1978)

    Article  ADS  Google Scholar 

  34. G.K. Celler, J.M. Poate, L.C. Kimerling, Spatially controlled crystal regrowth of ion-implanted silicon by laser irradiation. Appl. Phys. Lett. 32(8), 464–466 (1978). https://doi.org/10.1063/1.90109

    Article  ADS  Google Scholar 

  35. H.J. Leamy, G.A. Rozgonyi, T.T. Sheng, G.K. Celler, Periodic regrowth phenomena produced by laser annealing of ion-implanted silicon. Appl. Phys. Lett. 32(9), 535–537 (1978). https://doi.org/10.1063/1.90119

    Article  ADS  Google Scholar 

  36. A. Gat, J.F. Gibbons, A laser-scanning apparatus for annealing of ion-implantation damage in semiconductors. Appl. Phys. Lett. 32(3), 142–144 (1978). https://doi.org/10.1063/1.89960

    Article  ADS  Google Scholar 

  37. R.T. Young, C.W. White, G.J. Clark, J. Narayan, W.H. Christie, M. Murakami, P.W. King, S.D. Kramer, Laser annealing of boron-implanted silicon. Appl. Phys. Lett. 32(3), 139–141 (1978). https://doi.org/10.1063/1.89959

    Article  ADS  Google Scholar 

  38. J.A. Golovchenko, T.N.C. Venkatesan, Annealing of Te-implanted GaAs by ruby laser irradiation. Appl. Phys. Lett. 32(3), 147–149 (1978). https://doi.org/10.1063/1.89962

    Article  ADS  Google Scholar 

  39. G.A. Kachurin, E.V. Nidaevj, Fiz. Tekh. Poluprovod. 11, 2012 (1977) (in Russian)

    Google Scholar 

  40. M. Voelskow, Historical aspects of subsecond thermal processing, in Subsecond Annealing of Advanced Materials. Springer Series in Material Science, vol. 192, ed. by W. Skorupa, H. Schmidt (Springer, Cham, 2014), pp. 1–13

    Google Scholar 

  41. R.L. Cohen, J.S. Williams, L.C. Feldman, K.W. West, Thermally assisted flash annealing of silicon and germanium. Appl. Phys. Lett. 33(8), 751–753 (1978). https://doi.org/10.1063/1.90528

    Article  ADS  Google Scholar 

  42. H.A. Bomke, H.L. Berkowitz, M. Harmatz, S. Kronenberg, R. Lux, Annealing of ion-implanted silicon by an incoherent light pulse. Appl. Phys. Lett. 33(11), 955–957 (1978). https://doi.org/10.1063/1.90232

    Article  ADS  Google Scholar 

  43. J.T. Lue, Arc annealing of BF+2 implanted silicon by a short pulse flash lamp. Appl. Phys. Lett. 36(1), 73–76 (1980). https://doi.org/10.1063/1.91279

    Article  ADS  Google Scholar 

  44. J.T. Lue, A multichannel flash tube implemented for large area annealing of ion implanted semiconductors. Vacuum 32(12), 713–718 (1982)

    Article  ADS  Google Scholar 

  45. L. Correra, L. Pedulli, Incoherent-light-flash annealing of phosphorus-implanted silicon. Appl. Phys. Lett. 37(1), 55–57 (1980). https://doi.org/10.1063/1.91846

    Article  ADS  Google Scholar 

  46. J.M. Poate et al., Liquid and solid phase regrowth of Si by laser irradiation and thermally assisted flash annealing. Radiat Eff. 48(1–4), 167–174 (1980). https://doi.org/10.1080/00337578008209249

    Article  Google Scholar 

  47. J.T. Lue, Y.C. Liu, W.J. Shen, Light-flash induced metallic silicides from titanium films on silicon. Appl. Phys. Lett. 38(5), 372–374 (1981). https://doi.org/10.1063/1.92342

    Article  ADS  Google Scholar 

  48. R. Klabes, J. Matthäi, M. Voelskow, G.A. Kachurin, E.V. Nidaev, H. Bartsch, Flash lamp annealing of arsenic implanted silicon. Phys. Stat. Sol. (a) 66, 261 (1981)

    Article  ADS  Google Scholar 

  49. R. Klabes, M. Voelskow, H. Woittennek, E.V. Nidaev, L.S. Smirnov, Dopant redistribution after flash lamp annealing. Phys. Stat. Sol. (a) 71, K127 (1982)

    Article  ADS  Google Scholar 

  50. K.H. Heinig, K. Hohmuth, R. Klabes, M. Voelskow, H. Woittennek, Flash lamp annealing of ion implanted silicon. Radiat. Eff. 63(1–4), 115–123 (1982). https://doi.org/10.1080/00337578208222831

    Article  Google Scholar 

  51. A.R. Kirkpatrick, J.A. Minnucci, A.C. Greenwald, Silicon-solar cells by high-speed low-temperature processing. IEEE Trans. Electron Dev. 24(4), 429 (1977)

    Article  ADS  Google Scholar 

  52. R.A. McMahon, H. Ahmed, Electron-beam annealing of ion-implanted silicon. Electron. Lett. 15, 45 (1979). https://doi.org/10.1049/el:19790032

    Article  Google Scholar 

  53. B.Y. Tsaur, J.P. Donnelly, J.C.C. Fan, M.W. Geis, Transient annealing of arsenic-implanted silicon using a graphite strip heater. Appl. Phys. Lett. 39(1), 93–95 (1981). https://doi.org/10.1063/1.92529

    Article  ADS  Google Scholar 

  54. P. Chenevier, J. Cohen, G. Kamarinos, Pulsed annealing of semiconductors by microwave energy. J. Phys. Lett. 43(8), 291–294 (1982). https://doi.org/10.1051/jphyslet:01982004308029100

    Article  Google Scholar 

  55. R. Singh, Rapid isothermal processing. J. Appl. Phys. 63(8), R59 (1988)

    Article  ADS  Google Scholar 

  56. K. Nishiyama, M. Arai, N. Watanabe, Radiation annealing of boron-implanted silicon with a halogen lamp. Jap. J. Appl. Phys. 19(10), L563–L566 (1980)

    Article  ADS  Google Scholar 

  57. R.A. Powell, T.O. Yep, R.T. Fulks, Activation of arsenic-implanted silicon using an incoherent light source. Appl. Phys. Lett. 39(2), 150–152 (1981). https://doi.org/10.1063/1.92642

    Article  ADS  Google Scholar 

  58. P. Timans, J. Gelpey, S. McCoy, W. Lerch, S. Paul, Millisecond annealing, past, present and future. Mater. Res. Soc. Symp. Proc. 912, 3 (2006)

    Article  Google Scholar 

  59. E.J.H. Collart, P.M. Kopalidis, M. Hou, S. McCoy, P.J. Timans, A. Joshi, S. Prussin, Effects of implant temperature and millisecond annealing on dopant activation and diffusion, in Ion Implantation Conference 2012, AIP Conference Proceedings, vol. 1496 (2012), pp. 95–98. https://doi.org/10.1063/1.4766498

  60. R. Ditchfield, E.G. Seebauer, Rapid thermal processing: fixing problems with the concept of thermal budget. J. Electrochem. Soc. 144(5), 1842 (1997)

    Article  Google Scholar 

  61. T.O. Sedgwick, Short time annealing. J. Electrochem. Soc. 130(2), 484 (1983)

    Article  ADS  Google Scholar 

  62. http://www.vonardenne.biz/fileadmin/user_upload/druckschriften/Flash_Lamp_Annealing_english.pdf. Accessed 21 Mar 2016

  63. Y. Kim, S. Park, B.-K. Kim, H.J. Kim, J.-H. Hwang, Xe-arc flash annealing of indium tin oxide thin-films prepared on glass backplanes. Int. J. Heat Mass Transf. 91, 543–551 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.132

    Article  Google Scholar 

  64. K.A. Schroder, S.C. McCool, W.F. Furlan, Broadcast photonic curing of metallic nanoparticle films. NSTI-Nanotech 2006 3, 198 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Rebohle .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rebohle, L. (2019). Introduction. In: Flash Lamp Annealing. Springer Series in Materials Science, vol 288. Springer, Cham. https://doi.org/10.1007/978-3-030-23299-3_1

Download citation

Publish with us

Policies and ethics