Skip to main content

Ecohydrological Implications of Aeolian Processes in Drylands

  • Chapter
  • First Online:
Dryland Ecohydrology

Abstract

Aeolian processes, the erosion transport and deposition of soil particles by wind, are dominant geomorphological processes in many drylands, and important feedbacks are known to exist among aeolian, hydrological, and vegetation dynamics (Field et al. 2010; Ravi et al. 2011). The wind, a natural geomorphic agent, has been active as an erosive agent throughout geological times in many parts of the world. Outstanding examples are the extensive loess deposits along the Huanghe River (Yellow River) in China and along the Missouri and Mississippi rivers in the United States. Climatic changes and anthropogenic activities can greatly accelerate soil erosion by wind with implications for soil and vegetation degradation (Kok et al. 2012; Webb and Pierre 2018; Nauman et al. 2018). For instance, in the 1930s, a decreased precipitation coupled with intensive agricultural activities caused a dramatic increase in wind erosion in the Great Plains of the United States, resulting in the so-called Dust Bowl. Wind erosion can be activated also by land-use change. An example is provided by the Mu Us region in North China with an annual precipitation of 400 mm, which was once a grassland partially covered with forest, yet now is one of the major sources of dust in the world as a result of overgrazing and agricultural practices (Wang et al. 2005; Miao et al. 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfaro SC, Gaudichet A, Gomes L, Maillé M (1998) Mineral aerosol production by wind erosion: aerosol particle sizes and binding energies. Geophys Res Lett 25:991–994

    Article  CAS  Google Scholar 

  • Armbrust DV (1984) Wind and sandblast injury to field crops: effect of plant age. Agron J 76:991–993

    Article  Google Scholar 

  • Armbrust DV, Chepil WS, Siddoway FH (1964) Effects of ridges on erosion of soil by wind. Proc Soil Sci Soc Am 28:557–560

    Article  Google Scholar 

  • Archer S (1989) Have southern Texas savannas been converted to woodlands in recent history. Am Nat 134(4):545–561

    Article  Google Scholar 

  • Arya SPS (1975) A drag partitioning theory for determining the large-scale roughness parameter and wind stress on Artic pack ice. J Geophys Res 80:3447–3454

    Article  Google Scholar 

  • Baddock MC, Zobeck TM, Van Pelt RS, Fredrickson EL (2011) Dust emissions from undisturbed and disturbed, crusted playa surfaces: Cattle trampling effects. Aeolian Res 3:31–41

    Article  Google Scholar 

  • Bagnold RA (1941) The physics of blown sand and desert dunes. Chapman & Hall, London

    Google Scholar 

  • Batjargal Z(1992) The climatic and man-induced environmental factors of the degradation of ecosystem in Mongolia. International Workshop on Desertification, Ulaanbaatar, Mongolia, p 19

    Google Scholar 

  • Belly PY (1964) Sand movement by wind. Technical Memorandum 1. U.S. Army Corps of Engineers, Coastal Engineering Research Center, Washington, DC

    Google Scholar 

  • Belnap J (1995) Surface disturbances: their role in accelerating desertification. Environ Monit Assess 37:39–57

    Article  CAS  PubMed  Google Scholar 

  • Bhark EW, Small EE (2003) Association between plant canopies and the spatial patterns of infiltration in shrubland and grassland of the Chihuahuan Desert, New Mexico. Ecosystems 6(2):185–196. https://doi.org/10.1007/s10021-002-0210-9

    Article  Google Scholar 

  • Bhattachan A, D’Odorico P, Baddock MC, Zobeck TM, Okin GS, Cassar N (2012) The Southern Kalahari: a potential new dust source in the southern hemisphere? Environ Res Lett 7:024001

    Article  CAS  Google Scholar 

  • Bhattachan A, D’Odorico P, Okin GS, Dintwe K (2013) Potential dust emissions from the southern Kalahari’s dunelands. J Geophys Res Earth Surf 118(1):307–314. https://doi.org/10.1002/jgrf.20043

    Article  CAS  Google Scholar 

  • Bisal F, Hsieh J (1966) Influence of soil moisture on erodibility of soil by wind. Soil Sci 102:143–146

    Article  Google Scholar 

  • Borgogno F, D’Odorico P, Laio F, Ridolfi L (2009) Mathematical models of vegetation pattern formation in ecohydrology. Rev Geophys 47(1):RG1005. https://doi.org/10.1029/2007RG000256

    Article  Google Scholar 

  • Bradley NW, Gregory JM, Wilson GR (1992) Wet-bonding chemical effects on threshold friction velocity. Papers of ASAE, 922515, St. Joseph, MI

    Google Scholar 

  • Breshears DD, Whicker JJ, Johansen MP, Pinder JE (2003) Wind and water erosion and transport in semi-arid shrubland, grassland and forest ecosystems: quantifying dominance of horizontal wind-driven transport. Earth Surf Process Landf 28(11):1189–1209. https://doi.org/10.1002/esp.1034

    Article  Google Scholar 

  • Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Hydrology Paper 3, Colorado State University, Fort Collins, CO

    Google Scholar 

  • Burkhardt J (2010) Hygroscopic particles on leaves: nutrients or desiccants? Ecol Monogr 80(3):369–399. https://doi.org/10.1890/09-1988.1

    Article  Google Scholar 

  • Burkhardt J, Grantz DA (2016) Plants and atmospheric aerosols. In: Cánovas F, Lüttge U, Matyssek R (eds) Progress in botany, vol 78. Springer, Cham

    Google Scholar 

  • Campbell GS (1974) A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci 117:311–314

    Article  Google Scholar 

  • Chapin FS III, Walker BH, Hobbs RJ, Hooper DU, Lawton JH, Sala OE, Tilman D (1997) Biotic controls of the functioning of ecosystems. Science 277:500–504. https://doi.org/10.1126/science.277.5325.500

    Article  CAS  Google Scholar 

  • Chepil WS (1956) Influence of moisture on erodibility of soil by wind. Soil Sci Soc Am Proc 20:288–292

    Article  Google Scholar 

  • Chepil WS (1957) Sedimentary characteristics of dust storms: sorting of wind eroded soil material. Am J Sci 255:12–22

    Article  Google Scholar 

  • Chepil WS, Woodruff NP, Siddoway FH (1961). How to control soil blowing. USDA Farmers Bull. No. 2169

    Google Scholar 

  • Chepil WS, Woodruff NP (1963) The physics of wind erosion and its control. Adv Agron 15:211–302

    Article  Google Scholar 

  • Claflin LE, Stuteville DL, Armbrust DV (1973) Windblown soil in the epidemiology of bacterial leaf spot of alfalfa and common blight of beans. Phytopathology 63:1417–1419

    Article  Google Scholar 

  • Coetzee BWT, Tincani L, Wodu Z, Mwasi SM (2008) Overgrazing and bush encroachment by Tarchonanthus camphoratus in a semi-arid savanna. Afr J Ecol 46(3):449–451. https://doi.org/10.1111/j.1365-2028.2007.00842.x

    Article  Google Scholar 

  • Cooke R, Warren A, Goudie A (1993) Desert geomorphology. UCL Press, St. Ives

    Google Scholar 

  • Cornelis WM, Gabriels D (2003) The effect of surface moisture on the entrainment of dune sand by wind: an evaluation of selected models. Sedimentology 50:771–790

    Article  Google Scholar 

  • Cornelis WM, Oltenfreiter G, Gabriels D, Hartmann R (2004a) Splash-saltation of sand due to wind-driven rain: vertical deposition flux and sediment transport rate. Soil Sci Soc Am J 68:32–40

    Article  CAS  Google Scholar 

  • Cornelis WM, Oltenfreiter G, Gabriels D, Hartmann R (2004b) Splash-saltation of sand due to wind-driven rain: horizontal flux and sediment transport rate. Soil Sci Soc Am J 68:41–46

    Article  CAS  Google Scholar 

  • Cornelis WM, Gabriels D, Hartmann R (2004c) A conceptual model to predict the deflation threshold shear velocity as affected by near-surface water content: 1. Theory. Soil Sci Soc Am J 68:1154–1161

    Article  CAS  Google Scholar 

  • Cornelis WM, Gabriels D, Hartmann R (2004d) A conceptual model to predict the deflation threshold shear velocity as affected by near-surface water content: 2. Calibration and Verification. Soil Sci Soc Am J 68:1162–1168

    Article  CAS  Google Scholar 

  • Cornelis WM, Gabriels D, Hartmann R (2004e) A parameterisation for the threshold shear velocity to initiate deflation of dry and wet sediment. Geomorphology 59:43–51

    Article  Google Scholar 

  • Cornelis WM, Gabriels D (2004) A simple model for the prediction of the deflation threshold shear velocity of loose particles. Sedimentology 51:1–13

    Article  Google Scholar 

  • Darwish MM (1991) Threshold friction velocity: moisture and particle size effects. MS Thesis, Texas Tech University, Lubbock, TX

    Google Scholar 

  • Deardorff JW (1977) Parameterization of ground-surface moisture-content for use in atmospheric prediction models. J Appl Meteorol 16:1182–1185

    Article  Google Scholar 

  • DeBano LF (2000) The role of fire and soil heating on water repellence in wildland environments: a review. J Hydrol 231:195–206

    Article  Google Scholar 

  • De Boever M, Gabriels D, Ouessar M, Cornelis W (2015) Influence of scattered Acacia trees on soil nutrient levels in arid Tunisia. J Arid Environ 122:161–168

    Article  Google Scholar 

  • de Vos JA (1996) Testing compost as an anti wind erosion agent in a wind tunnel. Soil Tech 9:209–221

    Article  Google Scholar 

  • D’Odorico P, Bhattachan A, Davis KF, Ravi S, Runyan CW (2013) Global desertification: drivers and feedbacks. Adv Water Resour 51:326–344. https://doi.org/10.1016/j.advwatres.2012.01.013

    Article  Google Scholar 

  • D’Odorico P, Ravi S (2015) Land degradation and environmental change. Springer

    Google Scholar 

  • D’Odorico P, Okin GS, Bestelmeyer BT (2011) A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology 5(5):520–530. https://doi.org/10.1002/eco.259

    Article  Google Scholar 

  • D’Odorico P, Bhattachan A, Davis K, Ravi S, Runyan C (2012) Global desertification: drivers and feedbacks. Adv Water Resour 51:326–344. https://doi.org/10.1016/j.advwatres.2012.01.013

    Article  Google Scholar 

  • Dukes D, Gonzales H, Ravi S, Grandstaff D, Li J, Sankey J, Wang G, Van Pelt S (2018) Quantifying post-fire aeolian sediment transport using rare earth element tracers. J Geophys Res Biogeosciences 123(1):288–299. https://doi.org/10.1002/2017JG004284

    Article  Google Scholar 

  • Duncan ER, Moldenhauer WC (1968) Controlling wind erosion in Iowa. Iowa State University of Science and Technology, Cooperative Extension Service. Pm-432

    Google Scholar 

  • Engelstaedter S, Washington R (2007) Atmospheric controls on the annual cycle of North African dust. J Geophys Res 112:D03103. https://doi.org/10.1029/2006JD007195

    Article  Google Scholar 

  • Evan AT, Dunion J, Foley JA, Heidinger AK, Velden CS (2006) New evidence for a relationship between Atlantic tropical cyclone activity and African dust outbreaks. Geophys Res Lett 33(19). https://doi.org/10.1029/2006GL026408

  • FAO (1960) Soil erosion by wind and measures for its control. FAO Agricultural Development Paper 71, Rome

    Google Scholar 

  • Fecan F, Marticorena B, Bergametti G (1999) Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Ann Geophys 17:149–157

    Article  Google Scholar 

  • Field JP, Belnap J, Breshears DD, Neff JC, Okin GS, Whicker JJ, Painter TH, Ravi S, Reheis MC, Reynolds RL (2010) The ecology of dust. Front Ecol Environ 8(8):423–430. https://doi.org/10.1890/090050

    Article  Google Scholar 

  • Field JP, Breshears DD, Whicker JJ (2009) Toward a more holistic perspective of soil erosion: Why Aeolian research needs to explicitly consider fluvial processes and interactions. Aeolian Res 1(1–2):9–17

    Article  Google Scholar 

  • Fisher RA (1926) On the capillary forces in an ideal soil: correction of the formulae given by W.B. Haines. J Agric Sci 16:492–503

    Article  CAS  Google Scholar 

  • Fryrear DW (1984) Soil ridges-clods and wind erosion. Trans Am Soc Agric Eng 27:445–448

    Article  Google Scholar 

  • Fryrear DW, Downes JD (1975) Consider the plant in planning wind erosion control systems. Trans ASAE 18:1070–1072

    Article  Google Scholar 

  • Fryrear DW, Saleh A, Bilbro JD, Schomberg HM, Stout JE, Zobeck TM (1998) Revised wind erosion equation. Tech Bull No. 1. USDA-ARS, Big Spring, TX

    Google Scholar 

  • Garrison VH, Shinn EA, Foreman WT, Griffin DW, Holmes CW, Kellogg CA, Majewski MS, Richardson LL, Ritchie KB, Smith GW (2003) African and Asian dust: from desert soils to coral reefs. Bioscience 53(5):469–480. https://doi.org/10.1641/0006-3568(2003)053[0469:AAADFD]2.0.CO

    Article  Google Scholar 

  • Gillette DA (1977) Fine particulate emissions due to wind erosion. Trans ASAE 20:890–897

    Article  Google Scholar 

  • Gillette DA, Stockton PH (1989) The effect of nonerodible particles on wind erosion at erodible surfaces. J Geophys Res 94:12,885–12,893

    Article  Google Scholar 

  • Gilette DA, Adams J, Endo A, Smith D (1980) Threshold velocities for the input of soil particles into the air by desert soils. J Geophys Res 85:5621–5630

    Article  Google Scholar 

  • Gilette DA, Adams J, Muhs D, Kihl R (1982) Threshold friction velocities and rupture moduli for crusted desert soils for the input of soil particles in the air. J Geophys Res 87:9003–9015

    Article  Google Scholar 

  • Gilette DA, Herbert G, Stockton PH, Owen PR (1996) Causes of the fetch effect in wind erosion. Earth Surf Process Landf 21:641–659

    Article  Google Scholar 

  • Glaser AH (1955) The temperature above an airport runway on a hot day: Moist climate, Texas A&M Res. Foundation Contract AF (19(604)-977, Scitific Reports 5

    Google Scholar 

  • Gomes L, Arrue JL, Lopez MV, Sterk G, Richard D, Gracia R, Sabre M, Gaudichet A, Frangi JP (2003) Wind erosion in a semiarid agricultural area of Spain: the WELSONS project. Catena 52:235–256

    Article  Google Scholar 

  • Gonzales HB, Ravi S, Li J, Sankey JB (2018) Ecohydrological implications of aeolian sediment trapping by sparse vegetation in drylands. Ecohydrology. https://doi.org/10.1002/eco.1986

    Article  Google Scholar 

  • Goudie AS (1983) Dust storms in space and time. Prog Phys Geogr 7:502–529

    Article  Google Scholar 

  • Goudie AS, Middleton NJ (2001) Saharan dust storms: nature and consequences. Earth Sci Rev 56:179–204. https://doi.org/10.1016/S0012-8252(01)00067-8

    Article  CAS  Google Scholar 

  • Goudie AS, Middleton NJ (2006) Desert dust in the global system. Springer, Berlin. 287 pp

    Google Scholar 

  • Gregory JM, Darwish MM (1990) Threshold friction velocity prediction considering water content. Papers of ASAE, 902562, St. Joseph, MI

    Google Scholar 

  • Groβ J, Bärring L (2003) Wind erosion in Europe: where and when. In: Warren A (ed) Wind erosion on agricultural land in Europe. European Commission, Brussels

    Google Scholar 

  • Hagen LJ (1991a) Wind erosion mechanics – abrasion of aggregated soil. Trans ASAE 34:831–837

    Article  Google Scholar 

  • Hagen LJ (1991b) Wind erosion: emission rates and transport capapcities on rough surface. Papers of ASAE, 912082, St. Joseph, MI

    Google Scholar 

  • Hagen LJ (1991c) A wind erosion prediction system to meet user needs. J Soil Water Conserv 46:106–111

    Google Scholar 

  • Hagen LJ (1996) Crop residue effects on aerodynamic processes and wind erosion. Theor Appl Climatol 54:39–46

    Article  Google Scholar 

  • Hagen LJ, Armbrust DV (1992) Aerodynamic roughness and saltation trapping efficiency of tillage ridges. Trans ASAE 35:1179–1184

    Article  Google Scholar 

  • Hagen LJ, Skidmore EL, Saleh A (1992) Wind erosion – prediction of aggregate abrasion coefficients. Trans ASAE 35:1847–1850

    Article  Google Scholar 

  • Haines WB (1925) Studies of the physical properties of soils. II. A note on the cohesion developed by capillary forces in an ideal soil. J Agric Sci 15:529–535

    Article  CAS  Google Scholar 

  • Harnby N (1992) The mixing of cohesive powders. In: Harnby N et al (eds) Mixing in the process industries, 2nd edn. Nienow, Butterworth-Heinemann Ltd, Oxford, pp 79–98

    Chapter  Google Scholar 

  • Hui WJWJ, Cook BIBI, Ravi S, Fuentes JDJD, D’Odorico P (2008) Dust-rainfall feedbacks in the West African Sahel. Water Resour Res 44(5). https://doi.org/10.1029/2008WR006885

  • Huxman TE, Wilcox BP, Breshears DD, Scott RL, Snyder KA, Small EE, Hultine K, Pockman WT, Jackson RB (2005) Ecohydrological implications of woody plant encroachment. Ecology 86(2):308–319. https://doi.org/10.1890/03-0583

    Article  Google Scholar 

  • Iversen JD, White BR (1982) Saltation treshold on Earth, Mars and Venus. Sedimentology 29:111–119

    Article  Google Scholar 

  • Kaufman YJ, Tanré D, Boucher O (2002) A satellite view of aerosols in the climate system. Nature 419:215–223

    Article  CAS  PubMed  Google Scholar 

  • Khlosi M, Cornelis WM, Gabriels D, Sin G (2006) Simple modification to describe the soil water retention curve from saturation to oven-dryness. Water Resour Res 42:W11501

    Article  Google Scholar 

  • Khlosi M, Cornelis WM, van Genuchten MT, Douek A, Gabriels D (2008) Performance evaluation of models that describe the soil water retention curve between saturation and oven dryness. Vadose Zone J 7:87–96

    Article  Google Scholar 

  • Kok JF, Parteli EJR, Michaels TI, Karam DB (2012) The physics of wind-blown sand and dust. Rep Prog Phys 75:106901

    Article  PubMed  Google Scholar 

  • Kok JF, Ward DS, Mahowald NM, Evan AT (2018) Global and regional importance of the direct dust-climate feedback. Nat Commun 9(1):241. https://doi.org/10.1038/s41467-017-02620-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konrad W, Burkhardt J, Ebner M, Roth-Nebelsick A (2015) Leaf pubescence as a possibility to increase water use efficiency by promoting condensation. Ecohydrology 8(3):480–492. https://doi.org/10.1002/eco.1518

    Article  Google Scholar 

  • Kosugi K (1994) Three-parameter lognormal distribution model for soil water retention. Water Resour Res 32:891–901

    Article  Google Scholar 

  • Kosugi K (1997) A new model to analyze water retention characteristics of forest soils based on soil pore-radius distribution. J For Res 2:1–8

    Article  Google Scholar 

  • Kumar GD, Williams RC, Al Qublan HM, Sriranganathan N, Boyer RR, Eifert JD (2017) Airborne soil particulates as vehicles for Salmonella contamination of tomatoes. Int J Food Microbiol 243:90–95. https://doi.org/10.1016/j.ijfoodmicro.2016.12.006

    Article  CAS  PubMed  Google Scholar 

  • Kumar G, Ravi S, Micallef S, Brown E, Macarisin D (2018) Aeolian contamination of fruits by enteric pathogens: an unexplored paradigm. Curr Opin Food Sci 19:138–144

    Article  Google Scholar 

  • Li J, Okin GS, Alvarez L, Epstein H (2008) Effects of wind erosion on the spatial heterogeneity of soil nutrients in two desert grassland communities. Biogeochemistry 88:73–88

    Article  CAS  Google Scholar 

  • Li X, Maring H, Savoie D, Voss K, Prospero JM (1996) Dominance of mineral dust in aerosol light scattering in the North-Atlantic trade winds. Nature 380:416–419

    Article  CAS  Google Scholar 

  • Li J, Ravi S (2018) Interactions among hydrological-aeolian processes and vegetation determine grain-size distribution of sediments in a semi-arid coppice dune (nebkha) system. J Arid Environ. https://doi.org/10.1016/j.jaridenv.2018.03.011

    Article  Google Scholar 

  • Ludwig JA, Wilcox BP, Breshears DD, Tongway DJ, Imeson AC (2005) Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscapes. Ecology 86:288–297. https://doi.org/10.1890/03-0569

    Article  Google Scholar 

  • Lyles L (1975) Possible effects of wind erosion on soil productivity. J Soil Water Conserv 30:279–283

    Google Scholar 

  • Marticorena B, Bergametti G (1995) Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J Geophys Res 100(16):415–16,430

    Google Scholar 

  • Marticorena B, Bergametti G, Gillette D, Belnap J (1997a) Factors controlling threshold friction velocity in semiarid and arid areas of the United States. J Geophys Res 102:23277–23287

    Article  Google Scholar 

  • Marticorena B, Bergametti G, Aumont B, Callot Y, N’Doumé C, Legrand M (1997b) Modeling the atmospheric dust cycle: 2. Simulation of Saharan dust sources. J Geophys Res 102:4387–4404

    Article  Google Scholar 

  • Marshall JK (1971) Drag measurements on roughness arrays of varying density and distribution. Agric Meteorol 8:269–292. https://doi.org/10.1016/0002-1571(71)90116-6

    Article  Google Scholar 

  • McKenna-Neuman C, Nickling WG (1989) A theoretical and wind tunnel investigation of the effect of capillary water on the entrainment of sediment by wind. Can J Soil Sci 69:79–96. https://doi.org/10.4141/cjss89-008

    Article  Google Scholar 

  • McKenna-Neuman CM (2003) Effects of temperature and humidity upon the entrainment of sedimentary particles by wind. Bound-Layer Meteorol 108:61–89

    Article  Google Scholar 

  • McKie R (2001) Deadly dust ‘brought foot and mouth here’. Guardian Unlimited Archive. 9 Sept. http://www.guardian.co.uk/archive/article/0,4273,4253037,00.html

  • Middleton NJ, Goudie AS, Wells GL (1986) The frequency and source areas of dust storms. In: Nickling WG (ed) Aeolian geomorphology. Allen & Unwin, London, pp 237–259

    Google Scholar 

  • Miao Y, Jin H, Cui J (2016) Human activity accelerating the rapid desertification of the Mu Us Sandy Lands, North China Scientific Reports. doi:https://doi.org/10.1038/srep23003

  • Monteith JL (1981) Evaporation and surface temperature. Q J Royal Soc 107:1–27

    Article  Google Scholar 

  • Namikas SL, Sherman DJ (1995) A review of the effects of surface moisture content on aeolian sand transport. In: Tchakerian VP (ed) Desert Aeolian processes. Chapman & Hall, London, pp 269–293

    Chapter  Google Scholar 

  • Nanney RD, Fryrear DW, Zobeck TM (1993) Wind erosion prediction and control. Water Sci Techn 28:3–5

    Article  Google Scholar 

  • Nauman TW, Duniway MC, Webb NP, Belnap J (2018) Elevated aeolian sediment transport on the Colorado Plateau, USA: the role of grazing, vehicle disturbance, and increasing aridity. Earth Surf Process Landf 43(14):2897–2914. https://doi.org/10.1002/esp.4457

    Article  Google Scholar 

  • Neff JC, Ballantyne AP, Farmer GL, Mahowald NM, Conroy JL, Landry CC, Overpeck JT, Painter TH, Lawrence CR, Reynolds RL (2008) Increasing eolian dust deposition in the western United States linked to human activity. Nat Geosci 1:189–195

    Article  CAS  Google Scholar 

  • Nicholson SE, Tucker CJ, Ba MB (1998) Desertification, drought, and surface vegetation: an example from the West African Sahel. Bull Am Meteorol Soc 79(5):815–829

    Article  Google Scholar 

  • Nickling WG (1978) Eolian sediment transport during dust storms: Slims River Valley, Yukon Territory. Can J Soil Sci 15:1069–1084

    Google Scholar 

  • Nickling WG (1984) The stabilizing role of bonding agents on the entrainment of sediment by wind. Sedimentology 31:111–117

    Article  CAS  Google Scholar 

  • Nickling WG, Ecclestone M (1981) The effects of soluble salts on the threshold shear velocity of fine sand. Sedimentology 28:505–510

    Article  CAS  Google Scholar 

  • Nickling WG, Gillies JA (1989) Emission of fine-grained particles from desert spoils. In: Leinen M, Sarnthein M (eds) Paleoclimatology and paleometeorology: modern and past patterns of global atmospheric transport. Kluwer, Amsterdam, pp 133–165

    Chapter  Google Scholar 

  • Nicks AD, Williams JR, Richardson CW, Lane LJ (1987) Generating climatic data for a water erosion prediction model. Papers of ASAE, 87-2541, Joseph, MI

    Google Scholar 

  • Nordstrom K, Hotta S (2004) Wind erosion from cropland in the USA: a review of problems, solutions and prospects. Geoderma 121:157–167

    Article  Google Scholar 

  • Owen PR (1964) Saltation of uniform grains in air. J Fluid Mech 20:225–242

    Article  Google Scholar 

  • Okin GS, Gillette DA (2001) Distribution of vegetation in wind-dominated landscapes: implications for wind erosion modeling and landscape processes. J Geophys Res Atmos 106(D9):9673–9683. https://doi.org/10.1029/2001JD900052

    Article  Google Scholar 

  • Okin GS (2008) A new model of wind erosion in the presence of vegetation. J Geophys Res Earth Surf 113:F02S10. https://doi.org/10.1029/2007JF000758

    Article  Google Scholar 

  • Okin GS, Parsons AJ, Wainwright J, Herrick JE, Bestelmeyer BT, Peters DC, Fredrickson EL (2009) Do changes in connectivity explain desertification? Bioscience 59(3):237–244. https://doi.org/10.1525/bio.2009.59.3.8

    Article  Google Scholar 

  • Pope CA, Bates DV, Raizenne ME (1995) Health effects of particulate air pollution: time for reassessment? Environ Health Perspect 103:472–480. https://doi.org/10.1289/ehp.95103472

    Article  PubMed  PubMed Central  Google Scholar 

  • Prandtl H (1935) The mechanics of viscous fluids: aerodynamic theory. Julius Springer, Berlin

    Book  Google Scholar 

  • Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40(1):1002. https://doi.org/10.1029/2000RG000095

    Article  Google Scholar 

  • Puigdefabregas J (2005) The role of vegetation patterns in structuring runoff and sediment fluxes in drylands. Earth Surf Process Landf 30(2):133–147. https://doi.org/10.1002/esp.1181

    Article  Google Scholar 

  • Pye K (1980) Beach salcrete and eolian sand transport: evidence from North Queensland. J Sediment Petrol 50:257–261

    CAS  Google Scholar 

  • Rajot JL, Alfaro SC, Gomes L, Gaudichet A (2003) Soil crusting on sandy soils and its influence on wind erosion. Catena 53:1–16

    Article  Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294:2119–2124

    Article  CAS  PubMed  Google Scholar 

  • Raupach MR (1992) Drag and drag partition on rough surfaces. Bound-Layer Meteorol 60:375–395. https://doi.org/10.1007/BF00155203

    Article  Google Scholar 

  • Raupach MR, Gillette DA, Leys JF (1993) The effect of roughness elements on wind erosion threshold. J Geophys Res 98(D2):3023–3029

    Article  Google Scholar 

  • Raupach MR, Woods N, Dorr G, Leys JF, Cleugh HA (2001) The entrapment of particles by windbreaks. Atmos Environ 35:3373–3383

    Article  CAS  Google Scholar 

  • Ravi S, D’Odorico P, Over TM, Zobeck TM (2004) On the effect of air humidity on soil susceptibility to wind erosion: the case of air-dry soils. Geophys Res Lett 31(9). https://doi.org/10.1029/2004GL019485

    Article  Google Scholar 

  • Ravi S, D’Odorico P (2005) A field-scale analysis of the dependence of wind erosion threshold velocity on air humidity. Geophys Res Lett 32:L21404. https://doi.org/10.1029/2005GL023675

  • Ravi S, Zobeck TM, Over TM, Okin GS, D’Odorico P (2006a) On the effect of moisture bonding forces in air-dry soils on threshold friction velocity of wind erosion. Sedimentology 53(3):597–609. https://doi.org/10.1111/j.1365-3091.2006.00775.x

    Article  Google Scholar 

  • Ravi S, D’Odorico P, Herbert B, Zobeck T, Over TM (2006b) Enhancement of wind erosion by fire-induced water repellency. Water Resour Res 42(11). https://doi.org/10.1029/2006WR004895

  • Ravi S, D’Odorico P, Okin GS (2007) Hydrologic and Aeolian controls on vegetation patterns in arid landscapes. Geophys Res Lett 34(24). https://doi.org/10.1029/2007GL031023

  • Ravi S, D’Odorico P, Wang L, Collins S (2008) Form and function of grass ring patterns in arid grasslands: the role of abiotic controls. Oecologia 158(3):545–555. https://doi.org/10.1007/s00442-008-1164-1

    Article  PubMed  Google Scholar 

  • Ravi S, Huxman TE (2009) Land degradation in the Thar desert. Front Ecol Environ 7(10). https://doi.org/10.1890/09.WB.029

    Article  Google Scholar 

  • Ravi S, D’Odorico P (2009) Post-fire resource redistribution and fertility island dynamics in shrub encroached desert grasslands: a modeling approach. Landsc Ecol 24(3):325–335. https://doi.org/10.1007/s10980-008-9307-7

    Article  Google Scholar 

  • Ravi S, D’Odorico P, Zobeck TM, Over TM (2009a) The effect of fire-induced soil hydrophobicity on wind erosion in a semiarid grassland: experimental observations and theoretical framework. Geomorphology 105(1–2):80–86. https://doi.org/10.1016/j.geomorph.2007.12.010

    Article  Google Scholar 

  • Ravi S, D’Odorico P, Collins SL, Huxman TE (2009b) Can biological invasions induce desertification? New Phytol 181(3). https://doi.org/10.1111/j.1469-8137.2009.02736.x

    Article  Google Scholar 

  • Ravi S, D’Odorico P, Wang L, White C, Okin GS, Collins SL (2009c) Post-fire resource redistribution in desert grasslands: a possible negative feedback on land degradation. Ecosystems 12(3):434–444

    Article  Google Scholar 

  • Ravi S, Breshears DD, Huxman TE, D’Odorico P (2010) Land degradation in drylands: Interactions among hydrologicaeolian processes and vegetation dynamics. Geomorphology 116:236–245

    Article  Google Scholar 

  • Ravi S, D’Odorico P, Goudie AS, Thomas AD, Okin GS, Li J, Breshears DD, Field JP, Huxman TE, Van Pelt S, Whicker JJ, Swap RJ, Zobeck TM (2011) Aeolian processes and the biosphere. Rev Geophys 49(3). https://doi.org/10.1029/2010RG000328

  • Ravi S, Baddock MC, Zobeck TM, Hartman J (2012) Field evidence for differences in post-fire aeolian transport related to vegetation type in semi-arid grasslands. Aeolian Res 7:3–10

    Article  Google Scholar 

  • Rice MA, Willetts BB, McEwan IK (1996) Wind erosion of crusted soil sediments. Earth Surf Process Landf 21:279–293

    Article  CAS  Google Scholar 

  • Rice MA, Mullins CE, McEwan IK (1997) An analysis of soil crust strength in relation to potential abrasion by saltating particles. Earth Surf Process Landf 22:869–883

    Article  Google Scholar 

  • Ridgwell AJ (2002) Dust in the Earth system: the biogeochemical linking of land, air, and sea. Philos Trans R Soc Lond A 360:2905–2924

    Article  CAS  Google Scholar 

  • Rosenfeld D, Rudich Y, Lahav R (2001) Desert dust suppressing precipitation: a possible desertification feedback loop. Proc Natl Acad Sci U S A 98(11):5975–5979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi C, Nimmo JR (1994) Modeling of soil water retention from saturation to oven dryness. Water Resour Res 30:701–708

    Article  Google Scholar 

  • Saleh A, Fryrear DW (1995) Threshold wind velocities of wet soils as affected by wind blown sand. Soil Sci 160:304–309

    Article  Google Scholar 

  • Sankey JB, Germino MJ, Glenn NF (2009) Aeolian sediment transport following wildfire in sagebrush steppe. J Arid Environ 73(10):912–919. https://doi.org/10.1016/j.jaridenv.2009.03.016

    Article  Google Scholar 

  • Sankey J, Ravi S, Wallace CS, Huxman TE (2012) Quantifying soil change in degraded landscapes: shrub encroachment and effects of fire and vegetation removal in desert grasslands. J Geophys Res Biogeosciences. https://doi.org/10:1029/2012JG002002

  • Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG (1990) Biological feedbacks in global desertification. Science 247:1043–1048. https://doi.org/10.1126/science.247.4946.1043

    Article  CAS  PubMed  Google Scholar 

  • Schmidt BL, Triplett GB (1967) Controlling wind erosion. Ohio report, May–June, pp 35–38

    Google Scholar 

  • Scholes RJ, Archer SR (1997) Tree-grass interactions in savannas. Annu Rev Ecol Syst 28(1):517–544. https://doi.org/10.1146/annurev.ecolsys.28.1.517

    Article  Google Scholar 

  • Schwab GO, Fangmeier DD, Elliot WJ, Frevert RK (1993) Wind erosion and control practices. In: Soil and water conservation engineering. Wiley, New York, pp 114–133

    Google Scholar 

  • Shao Y (2000) Physics and modelling of wind erosion. Atmospheric and oceanographic sciences library, vol 23. Kluwer Academic, Dordrecht

    Google Scholar 

  • Shao Y, Lu H (2000) A simple expression for wind erosion threshold friction velocity. J Geophys Res 105:22,437–22,443

    Article  Google Scholar 

  • Shao Y, Raupach MR, Leys JF (1996) A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region. Aust J Soil Res 34:309–342

    Article  Google Scholar 

  • Shinn EA, Smith GW, Prospero JM, Betzer P, Hayes ML, Garrison VH, Barber RT (2000) African dust and the demise of Caribbean coral reefs. Geol Res Lett 27:3029–3032

    Article  Google Scholar 

  • Singh UB, Gregory JM, Wilson GR (1999) Texas erosion analysis model: theory and validation. In: Proceedings of Wind erosion: an international symposium/workshop, Manhattan, KS. Manuscript on CD-Rom, 23 p

    Google Scholar 

  • Skidmore EL (1986) Wind erosion control. Clim Chang 9:209–218

    Article  Google Scholar 

  • Skidmore EL, Tatarko J (1990) Stochastic wind simulation for erosion modeling. Trans ASAE 33:1893–1899

    Article  Google Scholar 

  • Skidmore EL, Fisher PS, Woodruff NP (1970) Wind erosion equation: computer solution and application. Soil Sci Soc Am Proc 34:931–935

    Article  Google Scholar 

  • Spaan WP, van den Abeele GD (1991) Wind borne particle measurements with acoustic sensors. Soil Technol 4:51–63

    Article  Google Scholar 

  • Stallings JH (1957) Soil conservation. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Sterk G, Lopez MV, Arrue JL (1999) Saltation transport on a silt loam soil in Northeast Spain. Land Degrad Dev 10:545–554

    Article  Google Scholar 

  • Stout JE (1990) Wind erosion within a simple field. Trans ASAE 33:1597–1600

    Article  Google Scholar 

  • Swap R, Garstang G, S. (1992) Saharan dust in the Amazon Basin. Tellus 44B:133–149

    Article  CAS  Google Scholar 

  • Turnbull L et al (2012) Understanding the role of ecohydrological feedbacks in ecosystem state change in drylands. Ecohydrology 5(2). https://doi.org/10.1002/eco.265

    Article  Google Scholar 

  • Turnbull L, Wainwright J, Ravi S (2014) Vegetation change in the Southwestern USA: patterns and processes. In: Mueller E, Wainwright J, Parsons A, Turnbull L (eds) Patterns of land degradation in drylands. Springer, Dordrecht

    Google Scholar 

  • UNEP (1997) World atlas of desertification. Arnold, London

    Google Scholar 

  • UNCCD (1994) United Nations convention to combat desertification, elaboration of an international convention to combat desertification in countries experiencing serious drought and/or desertification, particularly in Africa (U.N. Doc. A/AC.241/27, 33 I.L.M. 1328, United Nations)

    Google Scholar 

  • van Auken OW (2000) Shrub invasions of North American semiarid grasslands. Annu Rev Ecol Syst 31(1):197–215. https://doi.org/10.1146/annurev.ecolsys.31.1.197

    Article  Google Scholar 

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • van de Koppel J et al (2002) Spatial heterogeneity and irreversible vegetation change in semi-arid grazing systems. Am Nat 159:209–218

    Article  PubMed  Google Scholar 

  • Van Pelt RS, Zobeck TM (2007) Chemical constituents of fugitive dust. Environ Monit Assess 130:3–16. https://doi.org/10.1007/s10661-006-9446-8

    Article  CAS  PubMed  Google Scholar 

  • Van Pelt RS, Baddock MC, Zobeck TM, D’Odorico P, Ravi S, Bhattachan A (2017) Total vertical sediment flux and PM10 emissions from disturbed Chihuahuan Desert surfaces. Geoderma 293:19–25. https://doi.org/10.1016/j.geoderma.2017.01.031

    Article  Google Scholar 

  • Wagenbrenner NS, Germino MJ, Lamb BK, Robichaud PR, Foltz RB (2013) Wind erosion from a sagebrush steppe burned by wildfire: measurements of PM10 and total horizontal sediment flux. Aeolian Res 10:25–36

    Article  Google Scholar 

  • Wang X, Chen F, Dong Z, Xia D (2005) Evolution of the southern Mu Us Desert in north China over the past 50 years: an analysis using proxies of human activity and climate parameters. Land Degrad Dev 16:351–366

    Article  Google Scholar 

  • Wang G, Li J, Ravi S, Van Pelt RS, Costa PJ, Dukes D (2017) Tracer techniques in Aeolian research: approaches, applications, and challenges. Earth Sci Rev 170:1–16

    Article  Google Scholar 

  • Wang G, Li J, Ravi S, Dukes D, Gonzales H, Sankey J (2019a) Post-fire redistribution of soil carbon and nitrogen at a grassland-shrubland ecotone. Ecosystems 22(1):174–188. https://doi.org/10.1007/s10021-018-0260-2

    Article  CAS  Google Scholar 

  • Wang G, Li J, Ravi S (2019b) SA combined grazing and fire management may reverse woody shrub encroachment in desert grasslands. Landsc Ecol. https://doi.org/10.1007/s10980-019-00873-0

    Article  Google Scholar 

  • Webb NP, Marshall NA, Stringer LC, Reed MS, Chappell A, Herrick JE (2017) Land degradation and climate change: building climate resilience in agriculture. Front Ecol Environ 15(8):450–459. https://doi.org/10.1002/fee.1530

    Article  Google Scholar 

  • Webb NP, Pierre C (2018) Quantifying anthropogenic dust emissions. Earth’s Future 6(2):286–295. https://doi.org/10.1002/2017EF000766

    Article  CAS  Google Scholar 

  • Whicker JJ, Breshears DD, Wasiolek PT, Kirchner TB, Tavani RA, Schoep DA, Rodgers JC (2002) Temporal and spatial variation of episodic wind erosion in unburned and burned semiarid shrubland. J Environ Qual 31(2):599. https://doi.org/10.2134/jeq2002.0599

    Article  CAS  PubMed  Google Scholar 

  • Whicker JJ, Pinder JE, Breshears DD (2006) Increased wind erosion from forest wildfire: implications for contaminant-related risks. J Environ Qual 35:468–478. https://doi.org/10.2134/jeq2005.0112

    Article  CAS  PubMed  Google Scholar 

  • Williams JR (1994) The EPIC model. USDA-ARS, Temple, TX

    Google Scholar 

  • Wilson SJ, Cooke RU (1980) Wind erosion. In: Kirkby MJ, Morgan RPC (eds) Soil erosion. Wiley, Chichester, pp 217–251

    Google Scholar 

  • Woodruff NP, Siddoway FH (1965) A wind erosion equation. Soil Sci Soc Am Proc 29:602–608

    Article  Google Scholar 

  • Youssef F, Visser SM, Karssenberg D, Erpul G, Cornelis W, Gabriels D, Poortinga A (2012) The effect of vegetation pattern on wind-blown mass transport at the regional scale: a wind tunnel experiment. Geomorphology 159:178–188

    Article  Google Scholar 

  • Yu K, Okin GS, Ravi S, D’Odorico P (2016) Potential of grass invasions in desert shrublands to create novel ecosystem states under variable climate. Ecohydrology 9(8). https://doi.org/10.1002/eco.1742

    Article  Google Scholar 

  • Zhao HL, Zhao XY, Zhou RL, Zhang TH, Drake S (2005) Desertification processes due to heavy grazing in sandy rangeland, Inner Mongolia. J Arid Environ 62(2):309–319

    Article  Google Scholar 

  • Zobeck TM (1991a) Abrasion of crusted soils - influence of abrader flux and soil properties. Soil Sci Soc Am J 55:1091–1097

    Article  Google Scholar 

  • Zobeck TM (1991b) Soil properties affecting wind erosion. J Soil Water Cons 46:112–118

    Google Scholar 

  • Zobeck TM, Popham TW (1992) Influence of microrelief, aggregate size, and precipitation on soil crust properties. Trans ASAE 35:487–492

    Article  Google Scholar 

  • Zobeck TM, Sterk G, Funk R, Rajot JL, Stout JE, Van Pelt RS (2003) Measurement and data analysis methods for field-scale wind erosion studies and model validation. Earth Surf Proc Landf 28:1163–1188

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujith Ravi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ravi, S., Cornelis, W.M. (2019). Ecohydrological Implications of Aeolian Processes in Drylands. In: D'Odorico, P., Porporato, A., Wilkinson Runyan, C. (eds) Dryland Ecohydrology. Springer, Cham. https://doi.org/10.1007/978-3-030-23269-6_9

Download citation

Publish with us

Policies and ethics