Skip to main content

Cotton (Gossypium hirsutum L.) Breeding Strategies

  • Chapter
  • First Online:

Abstract

This chapter is focused on the achievements and future prospects of cotton breeding and related biotechnology. Traditional plant breeding has been utilized for the development of pure-line selection for high yielding cotton genotypes in segregating generations through the pedigree method. Selection criteria include boll number plant−1, boll mass, sympodial branches and ginning outturn percentage. Plant breeder efforts have been fruitful in releasing cotton cultivars with high yield potential and superior lint quality traits. Traditional breeding efforts resulted in the increase of seed cotton yield and fiber length. The calculated increase in the yield potential was 1.34 kg ha−1 year−1. However, further genetic gains due to selection for high-yield potential reached a plateau in the last two decades and the recent increase in yield was due to better cotton husbandry techniques. Cotton ideotypes specifically for various agronomic and environmental conditions may be developed. Moreover, utilization of wild relatives for the introgression of disease resistance and abiotic stress tolerance is proposed through traditional plant breeding along with molecular markers to reduce linkage drags due to wild relatives. These high yielding cultivars with superior agronomic and adaptability traits may be further used for the development of transgenics. Genome editing technique such as CRISPR/Cas (clustered regularly interspaced short palindromic repeats: associated protein) is one of the emerging technologies to knock out genes or SNP (single nucleotide polymorphism) substitution at specific site with future prospects for the development of disease resistant crop cultivars.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahsan MZ, Majidano MS, Channa AR et al (2014) Regeneration of cotton (Gossypium hirsutum L.) through asexual methods, a review. Am Eurasian J Agric Environ Sci 14(12):1478–1486

    Google Scholar 

  • Al-Bahrany AM, Al-Khayri JM (2000) Genotype variability in fatty acid composition and chemical characteristics of cotton (Gossypium hirsutum L.). Pak J Biol Sci 3:1778–1780

    Article  Google Scholar 

  • Almeida VCD, Hoffmann LV, Yokomizo GKI et al (2009) In situ and genetic characterization of Gossypium barbadense populations from the states of Pará and Amapá, Brazil. Pesq Agropec Bras 44(7):719–725

    Article  Google Scholar 

  • Altman DW, Fryxell PA, Koch SD, Howell CR (1990) Gossypium germplasm conservation augmented by tissue culture techniques for field collecting. Econ Bot 44(1):106–113

    Article  Google Scholar 

  • Anayol E, Bakhsh A, Karakoç ÖC et al (2016) Towards better insect management strategy: restriction of insecticidal gene expression to biting sites in transgenic cotton. Plant Biotechnol Rep 10(2):83–94

    Article  Google Scholar 

  • Anderson DM, Rajasekaran K (2016) The global importance of transgenic cotton. In: Ramawat KG, Ahuja MR (eds) Fiber plants, sustainable development and biodiversity. Springer, Cham, pp 17–33

    Google Scholar 

  • Aqeel M, Raza A (2017) CRISPR/cas9: an emerging revolution in therapeutics. Int J Appl Biol Foren 1:1–4

    Article  Google Scholar 

  • Arpat A, Waugh M, Sullivan JP et al (2004) Functional genomics of cell elongation in developing cotton fibers. Plant Mol Biol 54(6):911–929

    Article  CAS  PubMed  Google Scholar 

  • Ashraf J, Zuo D, Wang Q et al (2018) Recent insights into cotton functional genomics: progress and future perspectives. Plant Biotechnol J 16(3):699–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Aslam M, Haq MA, Bandesha AA, Haidar S (2018) NIAB-777: an early maturing, high yielding and better quality cotton mutant developed through pollen irradiation technique – suitable for high density planting. J Anim Plant Sci 28(2):636–646

    Google Scholar 

  • Azhar M, Anjum Z, Mansoor S (2013) Gossypium gossypioides: a source of resistance against cotton leaf curl disease among D genome diploid cotton species. J Anim Plant Sci 23:1436–1440

    CAS  Google Scholar 

  • Bechere E, Meredith WR, Boykin JC (2013) Registration of mutant population MD 15 M4 Gossypium hirsutum L. with enhanced fiber quality. J Plant Regist 7(2):216–219

    Article  Google Scholar 

  • Bell A, Robinson AF (2004) Development and characteristics of triple species hybrids used to transfer reniform nematode resistance from Gossypium longicalyx to Gossypium hirsutum. In: Proceedings of beltwide cotton conferences, New Orleans, USA, National Cotton Council of America, pp 422–426. https://naldc.nal.usda.gov/download/12353/PDF

  • Blaise D (2006) Yield, boll distribution and fibre quality of hybrid cotton (Gossypium hirsutum L.) as influenced by organic and modern methods of cultivation. J Agron Crop Sci 192:248–256

    Article  Google Scholar 

  • Bo Li J, Ni Dong X, Lei Z et al (2016) Simultaneous overexpression of the HhERF2 and PeDREB2a genes enhanced tolerances to salt and drought in transgenic cotton. Protein Pept Lett 23(5):450–458

    Article  CAS  Google Scholar 

  • Bolek Y, El-Zik KM, Pepper AE et al (2005) Mapping of Verticillium wilt resistance genes in cotton. Plant Sci 168:1581–1590

    Article  CAS  Google Scholar 

  • Brévault T, Heuberger S, Zhang M et al (2013) Potential shortfall of pyramided transgenic cotton for insect resistance management. Proc Natl Acad Sci 110(15):5806–5811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell BT, Saha S, Percy R, Frelichowski J, Jenkins JN, Park W, Du X (2010) Status of the global cotton germplasm resources. Crop Sci 50(4):1161–1179

    Article  Google Scholar 

  • Chen D, Wu Y, Zhang X, Li F (2015a) Analysis of [Gossypium capitis-viridis×(G. hirsutum× G. australe)2] trispecific hybrid and selected characteristics. PLoS One 10(6):e0127023. https://doi.org/10.1371/journal.pone.0127023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Wang Y, Zhao T et al (2015b) A new synthetic amphiploid (AADDAA) between Gossypium hirsutum and G. arboreum lays the foundation for transferring resistances to Verticillium and drought. PLoS One 10(6):e0128981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Lu X, Shu N et al (2017) Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system. Sci Rep 7:44304. https://doi.org/10.1038/srep44304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constable GA, Bange MP (2015) The yield potential of cotton (Gossypium hirsutum L.). Field Crop Res 182:98–106

    Article  Google Scholar 

  • de Carvalho LPD, Farias FJC, Lima MMDA, Rodrigues JIDS (2014) Inheritance of different fiber colors in cotton (Gossypium barbadense L.). Crop Breed Appl Biotechnol 14(4):256–260

    Article  Google Scholar 

  • Diouf FBH, Benbouza H, Nacoulima NL et al (2014) Segregation distortions in an interspecific cotton population issued from the [(Gossypium hirsutum x G. raimondii) 2 × G. sturtianum] hybrid. Tropicultura 32:73–79

    Google Scholar 

  • Dong H, Li W, Tang W, Zhang D (2004) Development of hybrid Bt cotton in China – a successful integration of transgenic technology and conventional techniques. Curr Sci 86(6):778–782

    Google Scholar 

  • Dong HZ, Li WJ, Tang W et al (2005) Increased yield and revenue with a seedling transplanting system for hybrid seed production in Bt cotton. J Agron Crop Sci 191(2):116–124

    Article  Google Scholar 

  • Dongre AB, Raut MP, Bhandarkar MR, Meshram KJ (2011) Identification and genetic purity testing of cotton F 1 hybrid using molecular markers. Indian J Biotechnol 10:301–306

    CAS  Google Scholar 

  • Evans DA, Bravo JE (1983) Plant protoplast isolation and culture. Int Rev Cytol Suppl 16:33–53

    CAS  Google Scholar 

  • FAO (2014) Food and Agriculture data. Retrieved from http://www.fao.org/faostat/en/#home. Accessed 19 Mar 2016

  • FAO (2016) Food and Agriculture data. Retrieved from http://www.fao.org/faostat/en/#home. Accessed 20 Feb 2016

  • Finer JJ, McMullen MD (1990) Transformation of cotton (Gossypium hirsutum L.) via particle bombardment. Plant Cell Rep 8(10):586–589

    Article  CAS  PubMed  Google Scholar 

  • Fu L, Yang X, Zhang X et al (2009) Regeneration and identification of interspecific asymmetric somatic hybrids obtained by donor-recipient fusion in cotton. Chin Sci Bull 54(17):3035–3044

    Article  CAS  Google Scholar 

  • Fuller RJ, Liddiard VM, Hess JR et al (2011) Improving cotton embryo culture by simulating in ovulo nutrient and hormone levels. In Vitro Cell Dev Biol Plant 47(3):410–419

    Article  CAS  Google Scholar 

  • Gairola KC, Nautiyal AR, Dwivedi AK (2011) Effect of temperatures and germination media on seed germination of Jatropha curcas Linn. Adv Bioresour 2(2):66–71

    Google Scholar 

  • Gapare W, Conaty W, Zhu QH et al (2017) Genome-wide association study of yield components and fibre quality traits in a cotton germplasm diversity panel. Euphytica 213(3):66

    Article  CAS  Google Scholar 

  • Gill MS, Bajaj YPS (1984) Interspecific hybridization in the genus Gossypium through embryo culture. Euphytica 33(2):305–311

    Article  Google Scholar 

  • Guo BS, Liu SE, Wang ZX et al (2010) Breeding of high yield, high quality three lines hybrid cotton variety Ji-FRH3018 [J]. J Hebei Agric Sci 7:025

    Google Scholar 

  • Guo X, Guo Y, Ma J et al (2013) Mapping heterotic loci for yield and agronomic traits using chromosome segment introgression lines in cotton. J Integr Plant Biol 55(8):759–774

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez AP, Ponti L, Herren HR et al (2015) Deconstructing Indian cotton: weather, yields, and suicides. Environ Sci Eur 27(1):1–17

    Article  Google Scholar 

  • Huang C, Nie X, Shen C et al (2017) Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome-wide association study using high density SNPs. Plant Biotechnol J 15(11):1374–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal SRM, Chaudhry MB, Aslam M, Bandesha AA (1994) Development of a high yielding cotton mutant, NIAB-92 through the use of induced mutations. Pak J Bot 26:99–104

    Google Scholar 

  • Iqbal Z, Sattar MN, Shafiq M (2016) CRISPR/Cas9: a tool to circumscribe cotton leaf curl disease. Front Plant Sci 7:475

    Article  PubMed  PubMed Central  Google Scholar 

  • Janga MR, Campbell LM, Rathore KS (2017) CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypium hirsutum L.). Plant Mol Biol 94(4–5):349–360

    Article  CAS  PubMed  Google Scholar 

  • Jha UC, Bohra A, Singh NP (2014) Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed 133(6):679–701

    Article  Google Scholar 

  • Jin S, Zhang X, Nie Y et al (2006) Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton. Biol Plant 50(4):519–524

    Article  CAS  Google Scholar 

  • Junqi QS, Yingjun ZBH, Xinlian S (1995) Studies on the interspecific hybrid of Gossypium hirsutum Cultivar 86-1× G. armourianum and its use in breeding [J]. Acta Agron Sin 5:013

    Google Scholar 

  • Kakani VG, Reddy KR, Koti S et al (2005) Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Ann Bot 96(1):59–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalbande BB, Patil AS (2016) Plant tissue culture independent Agrobacterium tumefaciens mediated In-planta transformation strategy for upland cotton (Gossypium hirsutum). J Genet Eng Biotechnol 14(1):9–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Karthikeyan P, Ramya K, Kannan N et al (2015) Genetic analysis in cotton (Gossypium hirsutum L.) for mechanical harvesting characters. Proceeding on Proceedings of Future Technologies: Indian Cotton in the Next Decade December 17–19, 2015 at Acharya Nagarjuna University, Guntur - 522 510, India, pp 264–270

    Google Scholar 

  • Khan AI, Khan IA, Sadaqat HA (2008) Heat tolerance is variable in cotton (Gossypium hirsutum L.) and can be exploited for breeding of better yielding cultivars under high temperature regimes. Pak J Bot 40(5):2053–2058

    Google Scholar 

  • Kohel RJ (1985) Genetic analysis of fiber color variants in cotton. Crop Sci 25:793–797

    Article  Google Scholar 

  • Kuraparthy V, Bowman DT (2013) Gains in breeding upland cotton for fiber quality. J Cotton Sci 17:157–162

    Google Scholar 

  • Li L, Zhu Y, Jin S, Zhang X (2014) Pyramiding Bt genes for increasing resistance of cotton to two major lepidopteran pests: Spodoptera litura and Heliothis armigera. Acta Physiol Plant 36(10):2717–2727

    Article  CAS  Google Scholar 

  • Li C, Unver T, Zhang B (2017a) A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in cotton (Gossypium hirsutum L.). Sci Rep 7:43902. https://doi.org/10.1038/srep43902

    Article  PubMed  PubMed Central  Google Scholar 

  • Li T, Ma X, Li N et al (2017b) Genome-wide association study discovered candidate genes of Verticillium wilt resistance in upland cotton (Gossypium hirsutum L.). Plant Biotechnol J 15(12):1520–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang C, Sun B, Meng Z et al (2017) Co-expression of GR79 EPSPS and GAT yields herbicide-resistant cotton with low glyphosate residues. Plant Biotechnol J 15(12):1622–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lian-gen FU (2011) Preliminary report of trial planting of hybrid cotton Tongza411 in Lanxi city and its cultivation technique. Hortic Seed 3:121–129

    Google Scholar 

  • Liu YD, Yin ZJ, Yu JW et al (2012) Improved salt tolerance and delayed leaf senescence in transgenic cotton expressing the Agrobacterium IPT gene. Biol Plant 56(2):237–246

    Article  CAS  Google Scholar 

  • Loison R, Audebert A, Chopart JL et al (2017a) Sixty years of breeding in Cameroon improved fibre but not seed cotton yield. Exp Agric 53(2):202–209

    Article  Google Scholar 

  • Loison R, Audebert A, Debaeke P et al (2017b) Designing cotton ideotypes for the future: reducing risk of crop failure for low input rainfed conditions in Northern Cameroon. Eur J Agron 90:162–173

    Article  Google Scholar 

  • Long L, Guo DD, Gao W et al (2018) Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods 14:85. https://doi.org/10.1186/s13007-018-0353-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehetre SS (2010) Wild Gossypium anomalum:a unique source of fibre fineness and strength. Curr Sci 7:58–71

    Google Scholar 

  • Mishra R, Wang HY, Yadav NR, Wilkins TA (2003) Development of a highly regenerable elite Acala cotton (Gossypium hirsutum cv. Maxxa) – a step towards genotype-independent regeneration. Plant Cell Tissue Organ Cult 73(1):21–35

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Muthusamy A, Jayabalan N (2011) In vitro induction of mutation in cotton (Gossypium hirsutum L.) and isolation of mutants with improved yield and fiber characters. Acta Physiol Plant 33(5):1793–1801

    Article  CAS  Google Scholar 

  • Muthusamy A, Jayabalan N (2014) Radiation and chemical mutagen induced somaclonal variations through in vitro organogenesis of cotton (Gossypium hirsutum L.). Int J Radiat Biol 90(12):1229–1239

    Article  CAS  PubMed  Google Scholar 

  • Muthusamy A, Vasanth K, Jayabalan N (2005) Induced high yielding mutants in cotton (Gossypium hirsutum L.). Mutat Breed News Lett 1:6–8

    Google Scholar 

  • Naqvi RZ, Asif M, Saeed M et al (2017) Development of a triple gene Cry1Ac-Cry2Ab-EPSPSconstruct and its expression in Nicotiana benthamiana for insect resistance and herbicide tolerance in plants. Front Plant Sci 8:55. https://doi.org/10.3389/fpls.2017.00055

    Article  PubMed  PubMed Central  Google Scholar 

  • Naranjo SE (2010) Impacts of Bt transgenic cotton on integrated pest management. J Agric Food Chem 59(11):5842–5851

    Article  CAS  PubMed  Google Scholar 

  • Nazeer W, Tipu AL, Ahmad S et al (2014) Evaluation of cotton leaf curl virus resistance in BC1, BC2, and BC3 progenies from an interspecific cross between Gossypiumarboreum and Gossypiumhirsutum. PLoS One 9(11):e111861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni M, Ma W, Wang et al (2017) Next generation transgenic cotton: pyramiding RNAi and Bt counters insect resistance. Plant Biotechnol J 15(9):1204–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang C, Du X, Ma Z (2006) Evaluation of the introgressed lines and screening for elite germplasm in Gossypium. Chin Sci Bull 51(3):304–312

    Article  Google Scholar 

  • Paterson AH, Wendel JF, Gundlach H et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492(7429):423–427

    Article  CAS  PubMed  Google Scholar 

  • Pathi KM, Tuteja N (2013) High-frequency regeneration via multiple shoot induction of an elite recalcitrant cotton (Gossypium hirsutum L. cv Narashima) by using embryo apex. Plant Signal Behav 8(1):e22763

    Article  CAS  PubMed  Google Scholar 

  • Pauli D, White JW, Andrade-Sanchez P et al (2017) Investigation of the influence of leaf thickness on canopy reflectance and physiological traits in upland and pima cotton populations. Front Plant Sci 8:1405

    Article  PubMed  PubMed Central  Google Scholar 

  • Pettigrew WT (2008) The effect of higher temperatures on cotton lint yield production and fiber quality. Crop Sci 48(1):278–285

    Article  Google Scholar 

  • Qiao F (2015) Fifteen years of Bt cotton in China: the economic impact and its dynamics. World Dev 70:177–185

    Article  Google Scholar 

  • Rajasekaran K, Grula JW, Anderson DM (1996) Selection and characterization of mutant cotton (Gossypium hirsutum L.) cell lines resistant to sulfonylurea and imidazolinone herbicides. Plant Sci 119(1–2):115–124

    Article  CAS  Google Scholar 

  • Rauf S, Rahman H (2005) A study of in vitro regeneration in relation to doses of growth regulators in hybrids of upland cotton. Plant Cell Tissue Organ Cult 83(2):209–215

    Article  CAS  Google Scholar 

  • Rauf S, Khan AA, Teixeria daSilva JA, Naveed A (2010) Consequences of plant breeding on genetic diversity. Int J Pl Breed 4(1):1–21

    Article  Google Scholar 

  • Rauf S, Al-Khayri JM, Zaharieva M et al (2016) Breeding strategies to enhance drought tolerance in crops. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits. Springer, Dordrecht, pp 397–445

    Chapter  Google Scholar 

  • Rehman L, Su X, Li X et al (2018) FreB is involved in the ferric metabolism and multiple pathogenicity-related traits of Verticillium dahliae. Curr Genet 64(3):645–659

    Article  CAS  PubMed  Google Scholar 

  • Renfroe MH, Hartwig RC, Smith RH (2001) Isolation and fusion of cotton protoplasts. Va J Sci 52:57–65

    Google Scholar 

  • Roberts RK, English BC, Larson JA et al (2002) Precision farming by cotton producers in six southern states: results from the 2001 southern precision farming survey. University of Tennessee Agricultural Experiment Station, Department of Agricultural Economics, Research Series, 03–02

    Google Scholar 

  • Saha S, Wu J, Jenkins JN et al (2010) Genetic dissection of chromosome substitution lines of cotton to discover novel Gossypium barbadense L. alleles for improvement of agronomic traits. Theor Appl Genet 120(6):1193–1205

    Article  PubMed  Google Scholar 

  • Satyavathi VV, Prasad V, Lakshmi BG, Sita GL (2002) High efficiency transformation protocol for three Indian cotton varieties via Agrobacterium tumefaciens. Plant Sci 162(2):215–223

    Article  CAS  Google Scholar 

  • Sekloka E, Lancon J, Goze E et al (2008) Breeding new cotton varieties to fit the diversity of cropping conditions in Africa: effect of plant architecture, earliness and effective flowering time on late-planted cotton productivity. Exp Agric 44(2):197–207

    Article  Google Scholar 

  • Shaheen T, Tabbasam N, Iqbal MA et al (2012) Cotton genetic resources. A review. Agron Sustain Dev 32:419–432

    Article  CAS  Google Scholar 

  • Shang L, Wang Y, Cai S et al (2016) Partial dominance, overdominance, epistasis and QTL by environment interactions contribute to heterosis in two upland cotton hybrids. G3: Genes Genomes Genet 6(3):499–507

    Article  CAS  Google Scholar 

  • Singh RP, Prasad PV, Sunita K et al (2007) Influence of high temperature and breeding for heat tolerance in cotton: a review. Adv Agron 93:313–385

    Article  CAS  Google Scholar 

  • Strickland SG (1998) U.S. Patent No. 5,846,797. Washington, DC: U.S. Patent and Trademark Office

    Google Scholar 

  • Su J, Li L, Zhang C et al (2018) Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton. Theor Appl Genet 131(6):1299–1314

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Zhang X, Nie Y et al (2004) Production and characterization of somatic hybrids between upland cotton (Gossypium hirsutum) and wild cotton (G. klotzschianum Anderss) via electrofusion. Theor Appl Genet 109(3):472–479

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Zhang X, Nie Y, Guo X (2005) Production of fertile somatic hybrids of Gossypium hirsutum+ G. bickii and G. hirsutum+ G. stockii via protoplast fusion. Plant Cell Tissue Organ Cult 83(3):303–310

    Article  Google Scholar 

  • Sun Y, Nie Y, Guo X et al (2006) Somatic hybrids between Gossypium hirsutum L.(4×) and G. davidsonii Kellog (2×) produced by protoplast fusion. Euphytica 151(3):393–400

    Article  CAS  Google Scholar 

  • Taggar GK, Arora R (2017) Insect biotypes and host plant resistance. In: Arora R, Sandhu S (eds) Breeding insect resistant crops for sustainable agriculture. Springer, Singapore, pp 387–421

    Chapter  Google Scholar 

  • Tahir MS, Noor UIK (2011) Development of an interspecific hybrid (Triploid) by crossing Gossypium hirsutum and G. arboreum. Cytologia 76(2):193–199

    Article  CAS  Google Scholar 

  • Tian X, Ruan J-X, Huang J-Q et al (2018) Characterization of gossypol biosynthetic pathway. PNAS 115(23):E5410–E5418. https://doi.org/10.1073/pnas.1805085115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari RS, Picchioni GA, Steiner RL et al (2013) Genetic variation in salt tolerance at the seedling stage in an interspecific backcross inbred line population of cultivated tetraploid cotton. Euphytica 194:1–11

    Article  Google Scholar 

  • Tong XH, Daud MK, Zhu SJ (2010) Selection and characterization of a novel glyphosate-tolerant upland cotton (Gossypium hirsutum L.) mutant (R1098). Plant Breed 129(2):192–196

    Article  CAS  Google Scholar 

  • Torbett JC, Roberts RK, Larson JA, English BC (2007) Perceived importance of precision farming technologies in improving phosphorus and potassium efficiency in cotton production. Precis Agric 8(3):127–137

    Article  Google Scholar 

  • Traxler G, Godoy-Avila S (2004) Transgenic cotton in Mexico. AgBio Forum 7(1–2):57–62. http://www.agbioforum.org

    Google Scholar 

  • Traxler G, Godoy-Avila S, Falck-Zepeda J, Espinoza-Arellano J (2001) Transgenic cotton in Mexico: economic and environmental impacts. Available atfile:///C:/Users/HP/Downloads/Transgenic_Cotton_in_Mexico_Economic_and_Environme.pdf

    Google Scholar 

  • Trolinder NL, Goodin JR (1987) Somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Rep 6(3):231–234

    Article  CAS  PubMed  Google Scholar 

  • Tuteja OP, Banga M (2011) Effects of cytoplasm on heterosis for agronomic traits in upland cotton (Gossypium hirsutum). Indian J Agric Sci 81(11):1001–1007

    Google Scholar 

  • Ullah I, Ashraf M, Zafar Y (2008) Genotypic variation for drought tolerance in cotton (Gossypium hirsutum L.): leaf gas exchange and productivity. Flora 203(2):105–115

    Article  Google Scholar 

  • Ulloa M, Stewart JM, Garcia EA et al (2006) Cotton genetic resources in the western states of Mexico: in situ conservation status and germplasm collection for ex situ preservation. Genet Resour Crop Evol 53(4):653–668

    Article  Google Scholar 

  • Ur Rahman H, Malik SA, Saleem M (2004) Heat tolerance of upland cotton during the fruiting stage evaluated using cellular membrane thermostability. Field Crop Res 85(2–3):149–158

    Article  Google Scholar 

  • Wang JE, Sun YQ, Zhu SJ (2007) Advances in cotton protoplast culture and somatic hybridization [J]. Cotton Sci 2:11–21

    CAS  Google Scholar 

  • Wang F, Gong Y, Zhang C et al (2011) Genetic effects of introgression genomic components from Sea Island cotton (Gossypium barbadense L.) on fiber related traits in upland cotton (G. hirsutum L.). Euphytica 181(1):41–53

    Article  Google Scholar 

  • Wang K, Wang Z, Li F et al (2012) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44:1098–1103

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Liu H, Li X et al (2014) Genetic mapping of fiber color genes on two brown cotton cultivars in Xinjiang. Springerplus 3(1):480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Liang C, Wu S et al (2016) Significant improvement of cotton Verticillium wilt resistance by manipulating the expression of Gastrodia antifungal proteins. Mol Plant 9(10):1436–1439

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Zhang J, Sun L et al (2018) High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnol J 16(1):137–150

    Article  CAS  PubMed  Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249. https://doi.org/10.1023/A:1006392424384

    Article  CAS  PubMed  Google Scholar 

  • Wenfang G, Gangqiang Li, Wand NYC et al (2017) Transgenic cotton against Verticillium wilt by over expression of hen egg white lysozyme. SINO-Pak international conference on innovation in cotton breeding & biotechnology, 22–24 November, Multan, Pakistan, pp 4

    Google Scholar 

  • Wu KM, Lu YH, Feng HQ et al (2008) Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science 321(5896):1676–1678

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Chen D, Zhu S et al (2017) A new synthetic hybrid (A1D5) between Gossypium herbaceum and G. raimondii and its morphological, cytogenetic, molecular characterization. PLoS One 12(2):e0169833. https://doi.org/10.1371/journal.pone.0169833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Guo W, Li G et al (2017) Transgenic cotton against aphids by overexpression of snowdrop and amaranth lectin. SINO-Pak international conference on innovation in cotton breeding & biotechnology, 22–24 November, Multan, Pakistan

    Google Scholar 

  • Yu XS, Chu BJ, Liu RE et al (2012) Characteristics of fertile somatic hybrids of G. hirsutum L. and G. trilobum generated via protoplast fusion. Theor Appl Genet 125(7):1503–1516

    Article  CAS  PubMed  Google Scholar 

  • Zeng B, Xu X, Zhou S et al (2012) Effects of temperature and light on photosynthetic heterosis of an upland cotton hybrid cultivar. Crop Sci 52(1):282–291

    Article  CAS  Google Scholar 

  • Zhang B (2013) Transgenic cotton: from biotransformation methods to agricultural application. Methods Mol Biol 958:3–15. https://doi.org/10.1007/978-1-62703-212-4_1

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Percy RG, McCarty JC (2014) Introgression genetics and breeding between Upland and Pima cotton: a review. Euphytica 198(1):1–12

    Article  Google Scholar 

  • Zhang F, Li S, Yang S et al (2015) Overexpression of a cotton annexin gene, GhAnn1, enhances drought and salt stress tolerance in transgenic cotton. Plant Mol Biol 87:47–67

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wu M, Yu J et al (2016) Breeding potential of introgression lines developed from interspecific crossing between upland cotton (Gossypium hirsutum) and Gossypium barbadense: heterosis, combining ability and genetic effects. PLoS One 11(1):e0143646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhenglan L, Ruqin J, Wennan Z et al (2002) Creation of the technique of interspecific hybridization for breeding in cotton. Sci China Ser C Life Sci 45:331–336

    Article  Google Scholar 

  • Zhu W, Liu K, Wang XD (2008) Heterosis in yield, fiber quality, and photosynthesis of okra leaf oriented hybrid cotton (Gossypium hirsutum L.). Euphytica 164:283. https://doi.org/10.1007/s10681-008-9732-3

    Article  CAS  Google Scholar 

  • Zhu X, Zhang Y, Guo W, Zhang TZ (2011) Relationships between differential gene expression and heterosis in cotton hybrids developed from the foundation parent CRI-12 and its pedigree-derived lines. Plant Sci 180:221–227

    Article  CAS  PubMed  Google Scholar 

  • Zhu T, Liang C, Meng Z et al (2017a) CottonFGD: an integrated functional genomics database for cotton. BMC Plant Biol 17(1):101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu T, Liang C, Meng Z et al (2017b) Cotton FGD (cotton function genomics database) and two case studies in cotton genomics research. SINO-Pak international conference on innovation in cotton breeding & biotechnology, 22–24 November, Multan, Pakistan

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix I: Research Institutes Relevant to Cotton Breeding and Biotechnology

Institution

Specialization and research activities

Contact information and website

Central cotton research institute, Multan, Pakistan

Varietal development, cotton yield management

http://www.ccri.gov.pk/

Cotton research Institute, Nanjing University China

Cotton genomics and genetics

http://mascotton.njau.edu.cn/

Central Institute for Cotton Research, India

Cotton varietal development, Integrated Pest Management

http://www.cicr.org.in/

Institute of Cotton Research, China

Genetic breeding, germplasm resources, farming cultivation, plant protection, molecular biology

http://www.caas.cn/en

Cotton Research Institute, Zimbabwe

Cotton varietal development, Integrated Pest Management

https://www.gfar.net/organizations/cotton-research-institute-1

Australian Cotton Research Institute, Narrabari, USA

Biopesticide, Insecticide Resistance, Cotton Nutrition and Irrigation, Cotton Pathology

https://www.dpi.nsw.gov.au/about-us/research-development/centres/narrabri

ACSA International Cotton Institute, USA

Basic education on all aspect of cotton

https://bf.memphis.edu/cotton/index.php/main/instructions

Cotton Research Institute, Egypt

Cotton breeding research, production and technology transfer

http://www.arc.sci.eg/InstsLabs/Default.aspx?OrgID=2

International Cotton Advisory Committee, USA

Cotton research and development policies formation

Icac.org

Cirad Agriculture Research Institute, France

Cotton germplasm, data bases

https://www.cirad.fr/en

Uzbekt Research Institute, Uzbekistan

Cotton germplasm resources

https://en.yellowpages.uz/company/uzbek-scientific-research-institute-of-cotton

Nazili Cotton Research Institute, Turkey

Cotton research and development

administrator@nazilli.tagem.gov.tr

1.2 Appendix II: Cotton Genetic Resources

Cultivar

Important traits

Cultivation location

NexGen 5711 B3XF

Bollgard3 XtendFlex Cotton Technology, Smooth leaf, bacterial blight tolerance, and fiber

AMERICOT, USA

ST 5517GLTP

Three-gene Bt technology of TwinLink Plus, bacterial blight resistance, and good storm tolerance

Stoneville, USA

FM 1953GLTP

An early/medium maturity glyphosate tolerance LibertyLink TwinLink Plus variety, bacterial blight resistance, bollworm resistance and fall armyworm

Bayer, USA

PHY 300W3FE

Early maturing, moderate water stress resistant, superior fiber quality

Phytogen, USA

IUB2013, FH142, MNH886

High yield potential, Cry1A genes, heat resistance, increased boll retention under heat stress

South Punjab, Pakistan

Sicot 71 4B3F

High yield, fiber quality, wide regional adaptability, three transgenic trait Monsanto’s Bollgard II and RRFlex transgenic traits, providing both pest resistance and herbicide tolerance

CSIRO, Australia

GIZA86

High yield extra-long cotton having longest and thinnest fiber

Egypt

ICS105

High yield and adaptable varieties

Maharashtra, India

FM 1944GLB2

Broadly adapted to all cotton-growing region, Liberty® and glyphosate herbicide tolerant, Lepidopteran resistant

USA

Gloria

High yield potential

Turkey

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rauf, S., Shehzad, M., Al-Khayri, J.M., Imran, H.M., Noorka, I.R. (2019). Cotton (Gossypium hirsutum L.) Breeding Strategies. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Industrial and Food Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-23265-8_2

Download citation

Publish with us

Policies and ethics