Skip to main content

Vanilla (Vanilla spp.) Breeding

  • Chapter
  • First Online:

Abstract

Vanilla planifolia is the botanical source of vanilla extract, but has not generally benefited from strategic plant breeding. V. planifolia was cultivated in pre-Columbian Mesoamerica for its desirable aroma, and spread globally by vegetative cuttings starting in the 1500s. In 1837 a method to artificially pollinate Vanilla flowers enabled commercial production outside the native range. Today, Madagascar leads Vanilla production with significant contributions from other nations. The mass propagation of a few foundational clones has resulted in a global industry reliant on a very narrow germplasm base with threats from multiple biotic and abiotic stresses. Further, the lack of molecular, genomic and definitive phenotypic characterization inhibits improvement within this genus. The establishment of modern Vanilla breeding programs could leverage increasingly accessible technologies including advances in genomics and biotechnology to rapidly improve this species for high priority traits like disease resistance, total bean yield, pod uniformity, vigor, non-splitting pods, flower longevity, extract quality and flowers that are able to self-pollinate without manual intervention. While plant breeding is generally a long-term prospect, the potential benefits are justified by the increasing demand for premium ingredients like natural vanilla extract. In the future, genetic improvement of this species could result in more resilient and higher-quality cultivars that reduce price volatility, support growers, improve sustainability and excite modern consumers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams JB, Brown HM (2007) Discoloration in raw and processed fruits and vegetables. Crit Rev Food Sci Nutr 47:319–333. https://doi.org/10.1080/10408390600762647

    Article  CAS  PubMed  Google Scholar 

  • Afgan E, Baker D, Batut B et al (2018) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46:W537–W544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arumuganathan K, Earle E (1991) Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Report 9:229–241

    Article  CAS  Google Scholar 

  • Belanger FC, Havkin-Frenkel D (2011) Molecular analysis of a Vanilla hybrid cultivated in Costa Rica. In: Handbook of Vanilla science and technology 2nd ed. Wiley, Singapore, pp 256–265

    Google Scholar 

  • Berenstein N (2016) Making a global sensation: Vanilla flavor, synthetic chemistry, and the meanings of purity. Hist Sci 54:399–424. https://doi.org/10.1177/0073275316681802

    Article  PubMed  Google Scholar 

  • Besse P, Da Silva D, Bory S et al (2004) RAPD genetic diversity in cultivated Vanilla: Vanilla planifolia, and relationships with V. tahitensis and V. pompona. Plant Sci 167:379–385. https://doi.org/10.1016/j.plantsci.2004.04.007

    Article  CAS  Google Scholar 

  • Bianchessi P (2012) Vanilla handbook. Venui Vanilla, Vanuatu

    Google Scholar 

  • Bory S, Catrice O, Brown S et al (2008a) Natural polyploidy in Vanilla planifolia (Orchidaceae). Genome 51:816–826

    Article  CAS  PubMed  Google Scholar 

  • Bory S, Da Silva D, Risterucci A-M et al (2008b) Development of microsatellite markers in cultivated Vanilla: polymorphism and transferability to other Vanilla species. Sci Hortic 115:420–425

    Article  CAS  Google Scholar 

  • Bory S, Grisoni M, Duval M, Besse P (2008c) Biodiversity and preservation of Vanilla: present state of knowledge. Genet Resour Crop Evol 55:551–571

    Article  Google Scholar 

  • Bory S, Lubinsky P, Risterucci AM et al (2008d) Patterns of introduction and diversification of Vanilla planifolia (Orchidaceae) in Reunion Island (Indian Ocean). Am J Bot 95:805–815

    Article  CAS  PubMed  Google Scholar 

  • Bouetard A, Lefeuvre P, Gigant R et al (2010) Evidence of transoceanic dispersion of the genus Vanilla based on plastid DNA phylogenetic analysis. Mol Phylogenet Evol 55:621–630. https://doi.org/10.1016/j.ympev.2010.01.021

    Article  CAS  PubMed  Google Scholar 

  • Bouriquet G, Boiteau P (1947) Sur la germination des graines de vanillier. Bull l’Acad Malgache 25:150–164

    Google Scholar 

  • Brown SC, Bourge M, Maunoury N et al (2017) DNA remodeling by strict partial endoreplication in orchids, an original process in the plant kingdom. Genome Biol Evol 9:1051–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruman H (1948) The culture history of Mexican Vanilla. Hisp Am Hist Rev 28:360–376

    Article  Google Scholar 

  • Brunschwig C, Rochard S, Pierrat A et al (2016) Volatile composition and sensory properties of Vanilla x tahitensis bring new insights for Vanilla quality control. J Sci Food Agric 96:848–858. https://doi.org/10.1002/jsfa.7157

    Article  CAS  PubMed  Google Scholar 

  • Brunschwig C, Collard F, Lepers-Andrzejewski S, Raharivelomanana P (2017) Tahitian Vanilla (Vanilla× tahitensis): a Vanilla species with unique features. In: El-Shemy H (ed) Active ingredients from aromatic and medicinal plants. Intech, Rijeka, pp 29–47

    Google Scholar 

  • Cameron KM (2004) Utility of plastid psaB gene sequences for investigating intrafamilial relationships within Orchidaceae. Mol Phylogenet Evol 31:1157–1180. https://doi.org/10.1016/j.ympev.2003.10.010

    Article  CAS  PubMed  Google Scholar 

  • Cameron KM (2009) On the value of nuclear and mitochondrial gene sequences for reconstructing the phylogeny of vanilloid orchids (Vanilloideae, Orchidaceae). Ann Bot 104:377–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron KM, Carmen Molina M (2006) Photosystem II gene sequences of psbB and psbC clarify the phylogenetic position of Vanilla (Vanilloideae, Orchidaceae). Cladistics 22:239–248

    Article  Google Scholar 

  • Chambers AH (2018) Establishing Vanilla production and a Vanilla breeding program in the southern United States. In: Handbook of Vanilla science and technology, 2nd edn. Wiley, Singapore, pp 165–180

    Chapter  Google Scholar 

  • Childers NF (1948) Vanilla culture in Puerto Rico, vol 28. US Department of Agriculture, Washington, DC

    Google Scholar 

  • Conter FE (1903) Vanilla cultivation in Hawaii. Press Bulletin, Hawaii Agricultural Experiment Station, no 6. Hawaii Agricultural Experiment Station, Honolulu

    Google Scholar 

  • Correll DS (1953) Vanilla – its botany, history, cultivation and economic import. Econ Bot 7:291–358

    Article  CAS  Google Scholar 

  • Delassus M (1963) La lutte contre la fusariose du vanillier par les méthodes génétiques. L’Agronomie Tropicale Série 2. Agron Gén Etud Tech 18:245–246

    Google Scholar 

  • Dequaire J (1976) L’amélioration du vanillier à Madagascar. J Agric Trad Bot Appliq 23:139–158

    Google Scholar 

  • Divakaran M, Babu KN, Ravindran PN, Peter KV (2006) Interspecific hybridization in Vanilla and molecular characterization of hybrids and selfed progenies using RAPD and AFLP markers. Sci Hortic 108:414–422

    Article  CAS  Google Scholar 

  • Divakaran M, Pillai GS, Babu KN, Peter KV (2008) Isolation and fusion of protoplasts in Vanilla species. Curr Sci 94:115–120

    CAS  Google Scholar 

  • Divakaran M, Nirmal Babu K, Grisoni M (2010) Biotechnological applications in Vanilla. Vanilla. CRC Press, Boca Raton, pp 51–73

    Google Scholar 

  • Duval M, Bory S, Andrzejewski S et al (2006) Diversité génétique des vanilliers dans leurs zones de dispersion secondaire. Les Actes BRG:181–196

    Google Scholar 

  • FAO (2009) Vanilla: post-harvest operations

    Google Scholar 

  • Fock-Bastide I, Palama TL, Bory S et al (2014) Expression profiles of key phenylpropanoid genes during Vanilla planifolia pod development reveal a positive correlation between PAL gene expression and vanillin biosynthesis. Plant Physiol Biochem 74:304–314

    Article  CAS  PubMed  Google Scholar 

  • Fouche JG, Jouve L (1999) Vanilla planifolia: history, botany and culture in Reunion island. Agronomie 19:689–703. https://doi.org/10.1051/agro:19990804

    Article  Google Scholar 

  • Gallage NJ, Møller BL (2015) Vanillin–bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the Vanilla orchid. Mol Plant 8:40–57

    Article  CAS  PubMed  Google Scholar 

  • Gallage NJ, Møller BL (2018) Vanilla: the most popular flavour. In: Biotechnology of natural products. Springer, Cham, pp 3–24

    Chapter  Google Scholar 

  • Gantait S, Kundu S (2017) In vitro biotechnological approaches on Vanilla planifolia Andrews: advancements and opportunities. Acta Physiol Plant 39:1–19

    Article  CAS  Google Scholar 

  • García RAM (2018) In vitro propagation of Vanilla. In: Handbook of Vanilla science and technology, 2nd edn. Wiley, Singapore, pp 181–190

    Chapter  Google Scholar 

  • Gigant RL et al (2016) Microsatellite markers confirm self-pollination and autogamy in wild populations of Vanilla mexicana Mill. (syn. V. inodora)(Orchidaceae) in the island of Guadeloupe. In: Abdurakhmonov I (ed) Microsatellite markers. Intech, Rijeka, pp 73–93

    Google Scholar 

  • Goff SA, Vaughn M, McKay S et al (2011) The iPlant collaborative: cyberinfrastructure for plant biology. Front Plant Sci 2:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Gretzinger N, Dean D (2018) Vanilla production in the context of culture, economics, and ecology of Belize. In: Handbook of Vanilla science and technology, 2nd edn. Wiley, Singapore, pp 50–68

    Google Scholar 

  • Grisoni M, Dijoux JB (2017) Vanilla variety named ‘Handa’. Google Patents

    Google Scholar 

  • Hernández H, Lubinsky P (2010) Cultivation systems Vanilla. CRC Press Taylor & Francis, Boca Raton, pp 75–95

    Google Scholar 

  • Hu Y, Resende M, Bombarely A et al (2019) Genomics-based diversity analysis of Vanilla species using a Vanilla planifolia draft genome and genotyping-by-sequencing. Sci Rep 9(1):3416. https://doi.org/10.1038/s41598-019-40144-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jose V (2005) Studies on genetic variability in open pollinated progenies of Vanilla. University of Calicut

    Google Scholar 

  • Joubes J, Chevalier C (2000) Endoreduplication in higher plants. Plant Mol Biol 43:735–745

    Article  CAS  PubMed  Google Scholar 

  • Kausch AP, Horner HT (1984) Increased nuclear-DNA content in raphide crystal idioblasts during development in Vanilla planifolia L. (Orchidaceae). Eur J Cell Biol 33:7–12

    CAS  PubMed  Google Scholar 

  • Knudson L (1950) Germination of seeds of Vanilla. Am J Bot 37:241–247

    Article  Google Scholar 

  • Koyyappurath S, Conejero G, Dijoux J et al (2015) Differential rResponses of Vanilla accessions to root rot and colonization by Fusarium oxysporum f. sp. radicis-Vanillae. Front Plant Sci 6:1125. https://doi.org/10.3389/fpls.2015.01125

    Article  PubMed  PubMed Central  Google Scholar 

  • Leitch IJ, Kahandawala I, Suda J et al (2009) Genome size diversity in orchids: consequences and evolution. Ann Bot 104:469–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lepers-Andrzejewski S, Siljak-Yakovlev S, Brown SC et al (2011) Diversity and dynamics of plant genome size: an example of polysomaty from a cytogenetic study of Tahitian vanilla (Vanilla× tahitensis, Orchidaceae). Am J Bot 98:986–997

    Article  PubMed  Google Scholar 

  • Lepers-Andrzejewski S, Causse S, Caromel B et al (2012) Genetic linkage map and diversity analysis of Tahitian Vanilla (Vanilla× tahitensis, Orchidaceae). Crop Sci 52:795–806

    CAS  Google Scholar 

  • Lubinsky P, Bory S, Hernandez J et al (2008a) Origins and dispersal of cultivated vanilla (Vanilla planifolia jacks. [Orchidaceae]). Econ Bot 62:127–138

    Article  CAS  Google Scholar 

  • Lubinsky P, Cameron KM, Molina MC et al (2008b) Neotropical roots of a Polynesian spice: the hybrid origin of Tahitian Vanilla, Vanilla tahitensis (Orchidaceae). Am J Bot 95:1040–1047

    Article  CAS  PubMed  Google Scholar 

  • Malabadi RB, Nataraja K (2007) Genetic transformation of Vanilla planifolia by Agrobacterium tumefaciens using shoot tip sections. Res J Bot 2:86–94

    Article  CAS  Google Scholar 

  • Martinez RC, Engleman EM (1993) Caracterización de dos tipos de Vanilla planifolia. Acta Bot Mex 25:49–59

    Article  Google Scholar 

  • Maruenda H, Vico MD, Householder JE et al (2013) Exploration of Vanilla pompona from the Peruvian Amazon as a potential source of vanilla essence: quantification of phenolics by HPLC-DAD. Food Chem 138:161–167. https://doi.org/10.1016/j.foodchem.2012.10.037

    Article  CAS  PubMed  Google Scholar 

  • Mathew KM, Lakshmanan R, Rao YS et al (2012) Isolation and culture of protoplasts of Vanilla planifolia Andrews and Vanilla wightiana Lindl., a wild relative. Crop Improv 39:31–35

    Google Scholar 

  • Menchaca G, Rebeca A, Ramos P et al (2011) In vitro germination of Vanilla planifolia and V. pompona hybrids. Rev Colomb Biotecnol 13:80–84

    Google Scholar 

  • Merchant N, Lyons E, Goff S et al (2016) The iPlant collaborative: cyberinfrastructure for enabling data to discovery for the life sciences. PLoS Biol 14:e1002342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minoo D, Jayakumar V, Veena S et al (2008) Genetic variations and interrelationships in Vanilla planifolia and few related species as expressed by RAPD polymorphism. Genet Resour Crop Evol 55:459–470

    Article  CAS  Google Scholar 

  • Montero-Carmona W, Jiménez VM (2015) Vanilla protoplasts: isolation and electrofusion. In: Rakshit A (ed) Emerging innovations in agriculture: from theory to practice. Athens IER, Athens, pp 15–29

    Google Scholar 

  • Nielsen LR (2000) Natural hybridization between Vanilla claviculata (W. Wright) Sw. and V. barbellata Rchb. f. (Orchidaceae): genetic, morphological, and pollination experimental data. Bot J Linn Soc 133:285–302

    Article  Google Scholar 

  • Nielsen LR, Siegismund HR (1999) Interspecific differentiation and hybridization in Vanilla species (Orchidaceae). Heredity 83:560–567

    Article  PubMed  Google Scholar 

  • Nissar VM, Hrideek T, Kuruvilla K et al (2006) Studies on pollination, inter specific hybridization and fruit development in Vanilla. J Plant Crop 34:167

    Google Scholar 

  • Odoux E (2010) Vanilla curing. In: Odoux E, Grisoni M (eds) Vanilla. CRC Press, Boca Raton, pp 173–188

    Chapter  Google Scholar 

  • Pemberton RW, Wheeler GS (2006) Orchid bees don’t need orchids: evidence from the naturalization of an orchid bee in Florida. Ecology 87:1995–2001

    Article  PubMed  Google Scholar 

  • Perez VB, Andreu LGI, Manzano EAE et al (2016) Molecular and microclimatic characterization of two plantations of Vanilla planifolia (Jacks ex Andrews) with divergent backgrounds of premature fruit abortion. Sci Hortic 212:240–250. https://doi.org/10.1016/j.scienta.2016.10.002

    Article  Google Scholar 

  • Quirós EV (2010) Vanilla production in Costa Rica. In: Handbook of Vanilla science and technology, 2nd edn. Wiley, Singapore, pp 40–49

    Chapter  Google Scholar 

  • Ramirez-Mosqueda MA, Iglesias-Andreu LG (2015) Indirect organogenesis and assessment of somaclonal variation in plantlets of Vanilla planifolia Jacks. Plant Cell Tissue Org Cult 123:657–664

    Article  Google Scholar 

  • Ramírez-Mosqueda M, Iglesias-Andreu L, Silva J et al (2019) In vitro selection of Vanilla plants resistant to Fusarium oxysporum f. sp. vanillae. Acta Physiol Plant 41:40. https://doi.org/10.1007/s11738-019-2832-y

    Article  CAS  Google Scholar 

  • Ramos-Castellá AL, Iglesias-Andreu LG, Martínez-Castillo J et al (2017) Evaluation of molecular variability in germplasm of vanilla (Vanilla planifolia G. Jackson in Andrews) in Southeast Mexico: implications for genetic improvement and conservation. Plant Genet Resour 15:310–320

    Article  CAS  Google Scholar 

  • Rao X, Krom N, Tang Y et al (2014) A deep transcriptomic analysis of pod development in the Vanilla orchid (Vanilla planifolia). BMC Genomics 15:964. https://doi.org/10.1186/1471-2164-15-964

    Article  PubMed  PubMed Central  Google Scholar 

  • Retheesh S, Bhat AI (2011) Genetic transformation and regeneration of transgenic plants from protocorm-like bodies of Vanilla (Vanilla planifolia Andrews) using Agrobacterium tumefaciens. J Plant Biochem Biotechnol 20:262

    Article  CAS  Google Scholar 

  • Roux-Cuvelier M, Grisoni M (2010) Conservation and movement of Vanilla germplasm. In: Odoux E, Grisoni M (eds) Vanilla, Singapore, pp 31–41

    Google Scholar 

  • Sasikumar B (2010) Vanilla breeding – a review. Agric Rev 31:139–144

    Google Scholar 

  • Schlüter PM, Arenas MAS, Harris SA (2007) Genetic variation in Vanilla planifolia (Orchidaceae). Econ Bot 61:328

    Article  Google Scholar 

  • Skov C, Wiley J (2005) Establishment of the neotropical orchid bee Euglossa viridissima (Hymenoptera: Apidae) in Florida. Fla Entomol 88:225–227. https://doi.org/10.1653/0015-4040(2005)088[0225:Eotnob]2.0.Co;2

    Article  Google Scholar 

  • Soto Arenas MA, Dressler RL (2010) A revision of the Mexican and Central American species of Vanilla Plumier ex Miller with a characterization of their ITS region of the nuclear ribosomal DNA. J Orchidol 9:285–354

    Google Scholar 

  • Sreedhar R, Venkatachalam L, Roohie K, Bhagyalakshmi N (2007) Molecular analyses of Vanilla planifolia cultivated in India using RAPD and ISSR markers. Orchid Sci Biotech 1:29–33

    Google Scholar 

  • Theis T, Jimenez FA (1957) A Vanilla hybrid resistant to Fusarium root rot. Phytopathology 47:579–581

    Google Scholar 

  • Travnicek P, Ponert J, Urfus T (2015) Challenges of flow-cytometric estimation of nuclear genome size in orchids, a plant group with both whole-genome and progressively partial endoreplication. Cytom A 87:958–966. https://doi.org/10.1002/cyto.a.22681

    Article  CAS  Google Scholar 

  • Verma PC, Chakrabarty D, Jena SN et al (2009) The extent of genetic diversity among Vanilla species: comparative results for RAPD and ISSR. Ind Crop Prod 29:581–589

    Article  CAS  Google Scholar 

  • Villanueva-Viramontes S, Hernández-Apolinar M, Fernández-Concha GC et al (2017) Wild Vanilla planifolia and its relatives in the Mexican Yucatan Peninsula: systematic analyses with ISSR and ITS. Bot Sci 95:169–187

    Article  Google Scholar 

  • Yang HL, Barros-Rios J, Kourteva G et al (2017) A re-evaluation of the final step of vanillin biosynthesis in the orchid Vanilla planifolia. Phytochemistry 139:33–46

    Article  CAS  PubMed  Google Scholar 

  • Zonneveld BJM, Leitch IJ, Bennett MD (2005) First nuclear DNA amounts in more than 300 angiosperms. Ann Bot 96:229–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan H. Chambers .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix I: Research Institutes and Online Resources Relevant to Vanilla

Institute name

Specialization Research Activities

Contact information

University of Florida Tropical Research and Education Center

Genetics, genomics, and plant breeding program. ~200 Vanilla accessions from multiple species

Alan Chambers, ac@ufl.edu

VATEL Biological Resources Center

~400 Vanilla accessions from multiple species including hybrids

Michel Grisoni, michel.grisoni@cirad.fr

Genetic Resources Center Vanille de Tahiti

~140 V. x tahitensis accessions for breeding and research

Sandra Lepers-Andrzejewski, sandra.lepers@vanilledetahiti.pf

National Laboratory for Genomics of Biodiversity

Mesoamerican crops and their wild relatives including 140 accessions of cultivated and wild Vanilla species

Angélica Cibrian Jaramillo, angelica.cibrian@cinvestav.mx

Unidad de manejo para la conservación de la Vida Silvestre

Vanilla germplasm management, maintenance, in vitro cultivation and producer training. 70 accessions

David Moreno Martínez, dmoreno29@hotmail.com

Orquidario de la Universidad Veracruzana

In vitro germplasm coordinator and orchid research and conservation. 14 accessions

Rebeca Menchaca García, rebecamenchaca@hotmail.com

Indian Institute of Spices Research

~300 Vanilla accessions

Bhas Sasikumar, bhaskaransasikumar@yahoo.com

1.2 Appendix II: Vanilla Genetic Resources

Cultivar or Morphotype

Important traits

Cultivation location

Handa

Selfed V. planifolia with resistance to Fusarium

Madagascar

Vaitsy

Possible V. planifolia x V. pompona hybrid

Madagascar

Albomarginata

V. planifolia Mansa’type with white leaf margins

Madagascar

Classique

Light green, flat leaves

Madagascar

Mexique

Darker, blue-colored leaves

Madagascar

Aiguille

Similar to Classique with more slender leaves and pods

Madagascar

Sterile

Similar to Classique yet with self-incompatibility

Madagascar

Mansa

Common commercial type of V. planifolia

Mexico

Oreja de Burro

Similar to Mansa but probably self-incompatible

Mexico

Variegata

Variegated V. planifolia

Mexico

Tahiti

Diploid V. x tahitensis

Tahiti

Parahurahu

Diploid V. x tahitensis

Tahiti

Rea rea

Diploid V. x tahitensis

Tahiti

Haapape

Probable autopolyploid of Tahiti

Tahiti

Tiarei

Tetraploid V. x tahitensis

Tahiti

  1. The morphotype accessions as described in the literature are most likely not exclusively distinct as those in different geographies may call the same genotype by different names, and genotypes that are genetically distinct may be called by the same name

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chambers, A.H. (2019). Vanilla (Vanilla spp.) Breeding. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Industrial and Food Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-23265-8_18

Download citation

Publish with us

Policies and ethics