Skip to main content

Breeding Strategies for Sunflower (Helianthus annuus L.) Genetic Improvement

  • Chapter
  • First Online:

Abstract

Sunflower is well known as an important oilseed crop and also consumed roasted, as a confectionary and bird feed. The plant has been subjected to the improvement by plant breeders resulting in the yellow revolution in many countries. Russian plant breeders have improved the oil content of sunflower seed that converted this crop from a roadside plant to a world famous oilseed crop. The cultivated germplasm retains 50% of genetic diversity present in crop wild relatives. This may be threatened due to worldwide hybrid cultivation which shares common parentage and a source of cytoplasmic male sterility. Therefore, there is a need to use the available genetic diversity within cultivated and wild germplasm to develop pre-breeding lines and elite breeding material with good combining quality. Sunflower breeding involves development of breeding lines suitable for hybrid breeding, diseases, abiotic stress and herbicide resistance. These objectives are fulfilled by recurrent selection for population improvement. Wide crosses were made to transfer cytoplasmic male sterility, diseases, abiotic and Orobanche resistance. Moreover, induced mutations were used to create new genetic variability for diseases and herbicide resistance and reduction of plant height. Marker-assisted selection has been validated for rust resistance, downy mildew resistance, and oleic acid content and fertility restorer genes. Transgenic sunflower development could be used to enhance oil content and quality. Sunflower breeding will be greatly facilitated by genomic tools such as CRISPR/Cas and whole genome association mapping.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alix K, Gérard PR, Schwarzacher T, Heslop-Harrison JS (2017) Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Ann Bot 120(2):183–194

    Article  PubMed  PubMed Central  Google Scholar 

  • Atlagić J, Terzić S (2015) The challenges of maintaining a collection of wild sunflower (Helianthus) species. Genet Resour Crop Evol 63:1–18

    Google Scholar 

  • Berrios EF, Gentzbittel L, Mokrani L et al (2000) Genetic control of early events in protoplast division and regeneration pathways in sunflower. Theor Appl Genet 101(4):606–612

    Article  CAS  Google Scholar 

  • Binsfeld PC, Wingender R, Schnabl H (2000) Characterization and molecular analysis of transgenic plants obtained by microprotoplast fusion in sunflower. Theor Appl Genet 101(8):1250–1258

    Article  CAS  Google Scholar 

  • Burke JM, Knapp SJ, Rieseberg LH (2005) Genetic consequences of selection during the evolution of cultivated sunflower. Genet 171:1933–1940

    Article  CAS  Google Scholar 

  • Cantamutto M, Poverene M (2007) Genetically modified sunflower release: opportunities and risks. Field Crops Res 101(2):133–144

    Article  Google Scholar 

  • Chepurnaya AL, Sherstyuk SV, Tikhomirov VT (2003) CMS-Rf system for sunflower breeding/sistemascms-rf para la mejoragenética de girasol/systèmescms-rf pour la culture du tournesol. Helia 26(38):59–66

    Article  Google Scholar 

  • Christov M (1990) A new source of cytoplasmic male sterility in sunflower. Helia 13(13):55–61

    Google Scholar 

  • Christov M (1994) Characterization of wild Helianthus species as sources of new features for sunflower breeding. In: Compositae: Biology & Utilization. Proceedings of the international Compositae conference, Kew, vol 2, pp 547–570

    Google Scholar 

  • Christov M (1999) Ways of production of new CMS sources in sunflower. Biotech Biotech Equip 13(1):25–32

    Article  Google Scholar 

  • Christov M, Kiryakov I, Shindrova P et al (2004) Evaluation of new interspecific and intergeneric sunflower hybrids for resistance to Sclerotinia sclerotiorum. In: Proceedings of the 16th international sunflower conference, Fargo, North Dakota, USA, International sunflower association, Paris, France, II, pp 693–698

    Google Scholar 

  • Cvejić S, Jocić S, Prodanović S et al (2011) Creating new genetic variability in sunflower using induced mutations. Helia 34(55):47–54

    Article  Google Scholar 

  • Dagustu N, Sincik M, Bayram G, Bayraktaroglu M (2010) Regeneration of fertile plants from sunflower (Helianthus annuus L.) immature embryo. Helia 33(52):95–102

    Article  Google Scholar 

  • De Labrouhe DT, Bordat A, Tourvieille J et al (2010) Impact of major gene resistance management for sunflower on fitness of Plasmopara halstedii (downy mildew) populations. OCL 17(1):56–64

    Article  Google Scholar 

  • De Oliveira MF, TulmannNeto A, Leite RM et al (2004) Mutation breeding in sunflower for resistance to Alternaria leaf spot. Helia 27(41):41–50

    Article  Google Scholar 

  • Dimitrijević A, Horn R (2018) Sunflower hybrid breeding: from markers to genomic selection. Front Plant Sci 8:2238

    Article  PubMed  PubMed Central  Google Scholar 

  • Dimitrijević A, Imerovski I, Miladinović D et al (2017) Oleic acid variation and marker-assisted detection of Pervenets mutation in high- and low-oleic sunflower cross. Crop Breed Appl Biotech 17(3):235–241

    Article  CAS  Google Scholar 

  • Dudhe M, Sujatha M (2016) Four decades of sunflower genetic resources activities in India. In: Proceedings of the 19th international sunflower conference, Edirne, Turkey. International Sunflower Association, Paris, France

    Google Scholar 

  • Dussle CM, Hahn V, Knapp SJ, Bauer E (2004) PlArg from Helianthus argophyllus is unlinked to other known downy mildew resistance genes in sunflower. Theor Appl Genet 109(5):1083–1086

    Article  CAS  PubMed  Google Scholar 

  • Encheva J, Shindrova P, Encheva V, Valkova D (2012) Mutant sunflower line R 12003, produced through in vitro mutagenesis. Helia 35(56):19–30

    Article  Google Scholar 

  • Faure N, Serieys H, Kaan F, Berville A (2002) Partial hybridization in crosses between cultivated sunflower and the perennial Helianthus mollis: effect of in vitro culture compared to natural crosses. Plant Cell Rep 20(10):943–947

    Article  CAS  Google Scholar 

  • FAO (2013) Food and agriculture statistics, Data retrieved 2018. Food and Agriculture Organization of the United Nations, Roma. http://www.fao.org/faostat/en/#home

  • FAO (2014) Food and agriculture statistics, Data retrieved 2018. Food and Agriculture Organization of the United Nations, Roma. http://www.fao.org/faostat/en/#home

  • FAO (2016) Food and agriculture statistics, Data retrieved 2018, 2019. Food and Agriculture Organization of the United Nations, Roma. http://www.fao.org/faostat/en/#home

  • Feng J, Liu Z, Cai X et al (2009) Transferring Sclerotiniaresistance genes from wild Helianthus into cultivated sunflower. In: Proceedings of the 31st sunflower research workshop, National Sunflower Association, January 13–14, 2009, Fargo, ND http://www.sunflowernsacom/research/research-workshop/documents/Feng_Genes_09pdf

  • Fernández-Cuesta A, Jan CC, Fernández-Martínez JM, Velasco L (2014) Variability for seed phytosterols in sunflower germplasm. Crop Sci 54:190–197

    Article  CAS  Google Scholar 

  • Fernández-Martínez J, Jimenez A, Dominguez J et al (1989) Genetic analysis of the high oleic acid content in cultivated sunflower (Helianthus annuus L). Euphytica 41:39–51

    Article  Google Scholar 

  • Fernández-Martínez JM, Mancha M, Osorio J, Garcés R (1997) Sunflower mutant containing high levels of palmitic acid in high oleic background. Euphytica 97(1):113–116

    Article  Google Scholar 

  • Fernández-Martínez J, Melero-Vara J, Muñoz-Ruz J et al (2000a) Selection of wild and cultivated sunflower for resistance to a new broomrape race that overcomes resistance of the gene. Crop Sci 40(2):550–555

    Article  Google Scholar 

  • Fernández-Martínez J, Melero-Vara J, Muñoz-Ruz J et al (2000b) Selection of wild and cultivated sunflower for resistance to a new broomrape race that overcomes resistance of the Or5 gene. Crop Sci 40(2):550–555

    Article  Google Scholar 

  • Fernández-Martínez JM, Pérez-Vich B, Velasco L, Domínguez J (2007) Breeding for specialty oil types in sunflower. Helia 30:75–84

    Article  Google Scholar 

  • Fernández-Moya V, Martínez-Force E, Garcés R (2005) Oils from improved high stearic acid sunflower seeds. J Agr Food Chem 53:5326–5330

    Article  CAS  Google Scholar 

  • Fu X, Qi L, Hulke B et al (2017) Somatic embryogenesis from corolla tubes of interspecific amphiploids between cultivated sunflower (Helianthus annuus L.) and its wild species. Helia 40(66):1–19

    Article  Google Scholar 

  • Gao W, Rao VR, Zhou M (2001) Plant genetic resources conservation and use in China. In: Proceedings of the national workshop on conservation and utilization of plant genetic resources, Beijing China, 25–27 October, pp 157–163

    Google Scholar 

  • García-Moreno MJ, Vera-Ruiz EM, Fernández-Martínez JM et al (2006) Genetic and molecular analysis of high gamma-tocopherol content in sunflower. Crop Sci 46:2015–2021

    Article  CAS  Google Scholar 

  • Gavrilova VA, Rozhkova VT, Anisimova IN (2014) Sunflower genetic collection at the Vavilov Institute of Plant Industry. Helia 37:1–16

    Article  Google Scholar 

  • Greenleaf SS, Kremen C (2006) Wild bees enhance honeybees’ pollination of hybrid sunflower. Proc Nat Acad Sci 103(37):13890–13895

    Google Scholar 

  • Gross BL, Schwarzbach AE, Rieseberg LH (2003) Origin (s) of the diploid hybrid species Helianthus deserticola (Asteraceae). Am J Bot 90(12):1708–1719

    Article  PubMed  Google Scholar 

  • Gutierrez A, Carrera A, Basualdo J et al (2010) Gene flow between cultivated sunflower and Helianthus petiolaris (Asteraceae). Euphytica 172(1):67–76

    Article  Google Scholar 

  • Hallahan D, Keiper-Hrynko N (2007) U.S. Patent Application No. 11/734,501

    Google Scholar 

  • Havekes FWJ, Miller JF, Jan CC (1991) Diversity among sources of cytoplasmic male sterility in sunflower (Helianthus annuus L). Euphytica 55(2):125–129

    Article  Google Scholar 

  • Hladni N, Zorić M, Terzić S et al (2018) Comparison of methods for the estimation of best parent heterosis among lines developed from interspecific sunflower germplasm. Euphytica 214(7):108. https://doi.org/10.1007/s10681-018-2197-0

    Article  CAS  Google Scholar 

  • Höniges A, Wegmann K, Ardelean A (2008) Orobanche resistance in sunflower. Helia 31:1–12

    Article  Google Scholar 

  • Horn R (2002) Molecular diversity of male sterility inducing and male-fertile cytoplasms in the genus Helianthus. Theor Appl Genet 104(4):562–570

    Article  CAS  PubMed  Google Scholar 

  • Horn R, Reddemann A, Drumeva M (2016) Comparison of cytoplasmic male sterility based on PET1 and PET2 cytoplasm in sunflower (Helianthus annuus L). In: proc 19th international sunflower conference, 2016, pp 620–629

    Google Scholar 

  • Hussain MM, Rauf S, Riaz MA et al (2016) Determination of drought tolerance related traits in Helianthus argophyllus, Helianthus annuus and their hybrids. Breed Sci J 67(3):257–267

    Article  CAS  Google Scholar 

  • Hussain MM, Kausar M, Rauf S et al (2018) Selection for some functional markers for adaptability of Helianthus argophyllus × Helianthus annuus derived population under abiotic stress conditions. Helia 41(68):83–108

    Article  Google Scholar 

  • Imerovski I, Dimitrijevic A, Miladinovic D et al (2013) Identification of PCR markers linked to different or genes in sunflower. Plant Breed 132(1):115–120

    Article  CAS  Google Scholar 

  • Jan CC, Chandler JM (1985) Transfer of powdery mildew resistance from Helianthus debilis Nutt. To cultivated sunflower 1. Crop Sci 25(4):664–666

    Article  Google Scholar 

  • Jan CC, Liu Z, Seiler GJ et al (2014) Broomrape (Orobanche cumana Wallr.) resistance breeding utilizing wild Helianthus species. Helia 37(61):141–150

    Article  Google Scholar 

  • Jiuhuan F, Liu Z, Seiler GJ, Jan CC (2015) Registration of cytoplasmic male–sterile oilseed sunflower genetic stocks, CMS GIG2 and CMS GIG2–RV, and fertility restoration lines, RF GIG2–MAX 1631 and RF GIG2–MAX 1631–RV. J Plant Reg 9:125–127

    Article  Google Scholar 

  • Jonic S, Skoric D, Lecic N, Molnar I (2000) Development of inbred lines of sunflower with various oil qualities. Actes Proceedings of the 15th international sunflower conference, Toulouse, France, pp 12–15

    Google Scholar 

  • Jovanka A (2004) Roles of interspecific hybridization and cytogenetic studies in sunflower breeding. Helia 27(41):1–24

    Article  Google Scholar 

  • Kalyar T, Rauf S, Teixeira da Silva JA, Iqbal Z (2013a) Variation in leaf orientation and its related traits in sunflower (Helianthus annuus L.) breeding population under high temperature. Field Crop Res 150:91–98

    Article  Google Scholar 

  • Kalyar T, Rauf S, Teixeira da Silva JA, Iqbal Z (2013b) Utilization of leaf temperature for selection of leaf gas exchange traits for the induction of heat resistance in sunflower (Helianthus annuus L.). Photosynthesis 51(3):419–428

    Article  CAS  Google Scholar 

  • Kalyar T, Rauf S, Teixeira da Silva JA (2014) Handling sunflower (Helianthus annuus L) populations under heat stress. Arch Agron Soil Sci 60:655–672

    Article  Google Scholar 

  • Kantar MB, Betts K, Michno JM et al (2014) Evaluating an interspecific Helianthus annuus× Helianthus tuberosus population for use in a perennial sunflower breeding program. Field Crops Res 155:254–264

    Article  Google Scholar 

  • Kantar MB, Sosa CC, Khoury CK, Castañeda-Álvarez NP, Achicanoy HA, Bernau V, Rieseberg LH (2015) Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.). Front Plant Sci 6:841

    Article  PubMed  PubMed Central  Google Scholar 

  • Khalil F, Rauf S, Monneveux P et al (2016) Genetic analysis of proline concentration under osmotic stress in sunflower (Helianthus annuus L.). Breed Sci J 66:463–470

    Article  CAS  Google Scholar 

  • Khan M, Rauf S, Munir H et al (2017) Evaluation of sunflower (Helianthus annuus L.) single cross hybrids under heat stress condition. Arch Agron Soil Sci 63(4):525–535

    Article  CAS  Google Scholar 

  • Khan H, Safdar A, Ijaz A et al (2018) Agronomic and qualitative evaluation of different local sunflower hybrids. Pak J Agric Res 31(1):69–78

    Google Scholar 

  • Kinman ML (1970) New developments in the USDA and state experiment station sunflower breeding programs. In: Proceedings of the 4th international sunflower conference Memphis, TN, USA, pp 181–183

    Google Scholar 

  • Knittel N, Gruber V, Hahne G, Lénée P (1994) Transformation of sunflower (Helianthus annuus L.): a reliable protocol. Plant Cell Rep 14(2–3):81–86

    CAS  PubMed  Google Scholar 

  • Krasnyanski S, Menczel L (1995) Production of fertile somatic hybrid plants of sunflower and Helianthus giganteus L. by protoplast fusion. Plant Cell Rep 14(4):232–235

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni VV, Shankergoud I, Govindappa MR (2015) Identification of sunflower powdery mildew resistant sources under artificial screening. SABRAO J Breed Genet 47(4):502–509

    Google Scholar 

  • Kumar AP, Boualem A, Bhattacharya A et al (2013) SMART–sunflower mutant population and reverse genetic tool for crop improvement. BMC Plant Biol 13(1):38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai Z, Nakazato T, Salmaso M et al (2005) Extensive chromosomal repatterning and the evolution of sterility barriers in hybrid sunflower species. Genet 171(1):291–303

    Article  CAS  Google Scholar 

  • Leclercq P (1969) Cytoplasmic male sterility in sunflower. Ann Amelior Plant 19:99–106

    Google Scholar 

  • León AJ, Lee M, Andrade FH (2001) Quantitative trait loci for growing degree days to flowering and photoperiod response in sunflower (Helianthus annuus L.). Theor Appl Genet 102(4):497–503

    Article  Google Scholar 

  • León AJ, Zambelli AD, Reid RJ et al (2013a) Nucleotide sequences mutated by insertion that encode a truncated oleate desaturase protein, proteins, methods and uses. WIPO patent WO/2013/004281, Jan 10, 2013

    Google Scholar 

  • León AJ, Zambelli AD, Reid RJ et al (2013b) Isolated mutated nucleotide sequences that encode a modified oleatedestaurase sunflower protein, modified protein, methods and uses. WIPO Patent WO/2013/004280, Jan 10, 2013

    Google Scholar 

  • Liu Z, Cai X, Seiler GJ et al (2010) Transferring sclerotinia resistance genes from wild Helianthus species into cultivated sunflower. In: 32nd sunflower research workshop, Fargo, pp 1–5

    Google Scholar 

  • Liu Z, Wang D, Feng J et al (2013) Diversifying sunflower germplasm by integration and mapping of a novel male fertility restoration gene. Genet 193(3):727–737

    Article  CAS  Google Scholar 

  • Louarn J, Boniface MC, Pouilly N et al (2016) Sunflower resistance to broomrape (Orobanche cumana) is controlled by specific QTLs for different parasitism stages. Front Plant Sci 7:590

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma GJ, Seiler GJ, Markell SG et al (2016) Registration of two double rust resistant germplasms, HA-R12 and HA-R13 for confection sunflower. J Plant Reg 10(1):69–74

    Article  Google Scholar 

  • Maheshwari S, Barbash DA (2011) The genetics of hybrid incompatibilities. Ann Rev Genet 45:331–355

    Article  CAS  PubMed  Google Scholar 

  • Mandel JR, Dechaine JM, Marek LF, Burke JM (2011) Genetic diversity and population structure in cultivated sunflower and a comparison to its wild progenitor, Helianthus annuus L. Theor Appl Genet 123(5):693–704

    Google Scholar 

  • Marinković R, Miller JF (1995) A new cytoplasmic male sterility source from wild Helianthus annuus. Euphytica 82(1):39–42

    Article  Google Scholar 

  • Martín-Sanz A, Malek J, Fernández-Martínez JM et al (2016). Increased virulence in sunflower broomrape (Orobanche Cumana Wallr.) populations from southern Spain is associated with greater genetic diversity. Front Plant Sci 7:589

    Google Scholar 

  • Merah O, Langlade N, Alignan M et al (2012) Genetic analysis of phytosterol content in sunflower seeds. Theor Appl Genet 125:1589–1601

    Article  CAS  PubMed  Google Scholar 

  • Mestries E, Gillot L, Penaud A, Cetio M (2004) Sunflower downy mildew resistance gene pyramiding, alternation and mixture: first results comparing the effects of different varietal structures on changes in the pathogen. In: Proceedings of the 16th international sunflower conference, Fargo, ND, USA, 29 September, pp 111–116

    Google Scholar 

  • Mezzarobba A, Jonard R (1986) Effect of the developmental stage and pretreatments on in vitro development of anthers isolated from cultivated sunflowers (H. annuus L.). Compt Rend AcadSci III Sciences de la Vie 303:181–186

    Google Scholar 

  • Miller JF (1996) Inheritance of restoration of Helianthus petiolaris sp fallax (PEF1) cytoplasmic male sterility. Crop Sci 36:83–86

    Article  Google Scholar 

  • Mirzahosein-Tabrizi M (2017) Identification of downy mildew resistance loci in sunflower germplasm. Notulae Scient Biolog 9(4):515–519

    Article  CAS  Google Scholar 

  • Mokrani L, Gentzbittel L, Azanza F et al (2002) Mapping and analysis of quantitative trait loci for grain oil content and agronomic traits using AFLP and SSR in sunflower (Helianthus annuus L). Theor Appl Genet 106:149–156

    Article  CAS  PubMed  Google Scholar 

  • Mulpuri S, Liu Z, Feng J, GulyaTJ Jan CC (2009) Inheritance and molecular mapping of a downy mildew resistance gene, Pl (13) in cultivated sunflower (Helianthus annuus L). Theor Appl Genet 119(5):795–803

    Google Scholar 

  • Murphy DJ (1990) Storage lipid bodies in plants and other organisms. Prog Lipid Res 29:299–324

    CAS  PubMed  Google Scholar 

  • Nagarathna TK, Shadakshari YG, Ramanappa TM (2011) Molecular analysis of sunflower (Helianthus annuus L.) genotypes for high oleic acid using microsatellite markers. Helia 34(55):63–68

    Google Scholar 

  • Paniego N, Bazzalo ME, Bulos M et al (2012) Genomics, mapping and marker assisted selection strategies for disease resistance. In: Proceedings of the 18th international sunflower conference, Mar del Plata, Argentina, pp 44–50

    Google Scholar 

  • Perez-Vich B, Munoz-Ruz J, Fernandez-Martinez JM (2004) Developing midstearic acid sunflower lines from a high stearic acid mutant. Crop Sci 44:70–75

    Article  CAS  Google Scholar 

  • Petcu E, Pâcureanu JM (2011) Developing drought and broomrape resistant sunflower germplasm utilizing wild Helianthus species. Helia 34(54):1–8

    Article  Google Scholar 

  • Pereira ML, Trapani N, Sadras VO (2000) Genetic improvement of sunflower in Argentina between 1930 and 1995. Part III Dry matter partitioning and grain composition Field Crops Res 67(3):215–221

    Google Scholar 

  • Pfenning M, Palfay G, Guillet T (2008) The CLEARFIELD® technology a new broad-spectrum post-emergence weed control system for European sunflower growers. J Plant Dis Prot 21:649–654

    Google Scholar 

  • Prabakaran AJ, Sujatha M (2004) Interspecific hybrid of Helianthus annuus × H. simulans: characterization and utilization in improvement of cultivated sunflower (H. annuus L.). Euphytica 135(3):275–282

    Article  CAS  Google Scholar 

  • Presotto A, Ureta MS, Cantamutto M, Poverene M (2012) Effects of gene flow from IMI resistant sunflower crop to wild Helianthus annuus populations. Agric Ecosys Environ 146(1):153–161

    Article  Google Scholar 

  • Qi L, Gulya T, Seiler GJ et al (2011) Identification of resistance to new virulent races of rust in sunflowers and validation of DNA markers in the gene pool. Phytopathology 101(2):241–249

    Article  CAS  PubMed  Google Scholar 

  • Radonic LM, Zimmermann JM, Zavallo D et al (2008) Introduction of antifungal genes in sunflower via agrobacterium. Electron J Biotechnol 11(5):8–9

    Article  CAS  Google Scholar 

  • Rauf S (2008) Breeding sunflower (Helianthus annuus L) for drought tolerance. Commun Biomet Crop Sci 3(1):29–44

    Google Scholar 

  • Rauf S, Sadaqat HA (2008) Identification of physiological traits and genotypes combined to high achene yield. Aust J Crop Sci 1(1):23–30

    Google Scholar 

  • Rauf S, Sadaqat HA, Khan IA (2008) Effect of moisture regimes on combining ability variations of seedling traits in sunflower (Helianthus annuus L.). Canad J Pl Sci 88(2):323–329

    Article  Google Scholar 

  • Rauf S, Sadaqat HA, Khan IA, Ahmed R (2009) Genetic analysis of leaf hydraulics in sunflower (Helianthus annuusL) under drought stress. Plant Soil Environ 55(2):62–69

    Article  CAS  Google Scholar 

  • Rauf S, Al-Khayri JM, Zaharieva M et al (2016) Breeding strategies to enhance drought tolerance in crops. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits. Springer, Dordrecht, pp 397–445

    Chapter  Google Scholar 

  • Rauf S, Jamil N, Tariq SA et al (2017) Progress in modification of sunflower oil to expand its industrial value. J Sci Food Agric 97:1997–2006

    Article  CAS  PubMed  Google Scholar 

  • Roche J, Alignan M, Bouniols A et al (2010) Sterol content in sunflower seeds (Helianthus annuus L.) as affected by genotypes and environmental conditions. Food Chemist 121:990–995

    Article  CAS  Google Scholar 

  • Rondanini D, Savin R, Hall AJ (2003) Dynamics of fruit growth and oil quality of sunflower (Helianthus annuus L) exposed to brief intervals of high temperature during grain filling. Field Crops Res 83(1):79–90

    Article  Google Scholar 

  • Rosenthal DM, Schwarzbach AE, Donovan LA et al (2002) Phenotypic differentiation between three ancient hybrid taxa and their parental species. Int J Plant Sci 163(3):387–398

    Article  Google Scholar 

  • Sabetta W, Alba V, Blanco A, Montemurro C (2011) sunTILL: a TILLING resource for gene function analysis in sunflower. Plant Methods 7(1):20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scelonge C, Wang L, Bidney D et al (2000) Transgenic Sclerotinia resistance in sunflower (Helianthus annuus L.). In: Proceedings of 15th international sunflower conference. Toulouse, France, 12–15 June, pp 1–5

    Google Scholar 

  • Seiler GJ (1992) Utilization of wild sunflower species for the improvement of cultivated sunflower. Field Crops Res 30(3):195–230

    Article  Google Scholar 

  • Seiler GJ (2007a) The potential of wild sunflower species for industrial uses. Helia 30(46):175–198

    Article  Google Scholar 

  • Seiler GJ (2007b) Wild annual Helianthus anomalus and H deserticola for improving oil content and quality in sunflower. Indust Crops Prod 25(1):95–100

    Article  Google Scholar 

  • Seiler GJ (2010) Utilization of wild Helianthus species in breeding for disease resistance. In: Proceedings of the International Sunflower Association (ISA) symposium sunflower breeding on resistance to diseases, 2010, pp 36–50

    Google Scholar 

  • Seiler GJ, Jan CC (2014) Wild sunflower species as a genetic resource for resistance to sunflower broomrape (Oroban checumana Wallr). Helia 37(61):129–139

    Article  Google Scholar 

  • Seiler G, Marek LF (2011) Germplasm resources for increasing the genetic diversity of global cultivated sunflower. Helia 34(55):1–20

    Article  Google Scholar 

  • Shehbaz M, Rauf S, Al-Sadi AM et al (2018) Introgression and inheritance of charcoal rot (Macrophomina phaseolina) resistance from silver sunflower (Helianthus argophyllus Torr. & A. Gray) into cultivated sunflower (Helianthus annuus L.). Aust Plant Path 47(4):413–420

    Article  CAS  Google Scholar 

  • Škorić D, Jocić S, Sakač Z, Lečić N (2008) Genetic possibilities for altering sunflower oil quality to obtain novel oils. Canad J Physiol Pharm 86(4):215–221

    Article  CAS  PubMed  Google Scholar 

  • Smith BD (2006) Eastern North America as an independent center of plant domestication. Proc Nat Acad Sci 103(33):12223–12228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SA, King RE, Min DB (2007) Oxidative and thermal stabilities of genetically modified high oleic sunflower oil. Food Chemist 102(4):1208–1213

    Article  CAS  Google Scholar 

  • Soldatov KI (1976) Chemical mutagenesis in sunflower breeding. In: Proceedings of the 7th international sunflower conference. International Sunflower Association, Vlaardingen, pp 352–357

    Google Scholar 

  • Sujatha M, Prabakaran AJ (2001) High frequency embryogenesis in immature zygotic embryos of sunflower. Plant Cell Tissue Org Cult 65(1):23–29

    Article  CAS  Google Scholar 

  • Sujatha M, Prabakaran AJ, Dwivedi SL, Chandra S (2008) Cytomorphological and molecular diversity in backcross-derived inbred lines of sunflower (Helianthus annuus L). Genome 51(4):282–293

    Article  CAS  PubMed  Google Scholar 

  • Tahara M (1915) Cytological investigation on the root tips of Helianthus annuus. Bot Magaz Tokyo 29:1–5

    Article  Google Scholar 

  • Taski-Ajdukovic K, Vasic D, Nagl N (2006) Regeneration of interspecific somatic hybrids between Helianthus annuus L. and Helianthus maximiliani (Schrader) via protoplast electrofusion. Plant Cell Rep 25(7):698–704

    Article  CAS  PubMed  Google Scholar 

  • Tilak IS, Kisan B, Goud IS et al (2018) Biochemical and molecular characterization of parents and its crosses for high oleic acid content in sunflower (Helianthus annuus L). Int J Curr Microbiol App Sci 7(4):2000–2020

    Article  CAS  Google Scholar 

  • Turkec A, Goksoy AT (2006) Identification of inbred lines with superior combining ability for hybrid sunflower (Helianthus annuus) production in Turkey. New Zealand J Crop Hort Sci 34(1):7–10

    Article  Google Scholar 

  • Vanzela AL, Ruas CF, Oliveira MF, Ruas PM (2002) Characterization of diploid, tetraploid and hexaploid Helianthus species by chromosome banding and FISH with 45S rDNA probe. Genetics 114(2):105–111

    CAS  Google Scholar 

  • Vasko V, Kyrychenko V (2016) Variability of valuable economic traits in M1 and M2 sunflower generations influenced by dimethyl sulfate and γ–rays. Žemėsūkiomokslai 23(4):142–159

    Google Scholar 

  • Vera-Ruiz EM, Velasco L, Leon AJ, Fernandez-Martnez JM, PerezVich B (2006) Molecular tagging and genetic mapping of the Thp1 gene controlling betatocopherol accumulation in sunflower. Mol Breed 17:291–296

    Article  CAS  Google Scholar 

  • Velasco L, Fernández-Martínez JM (2003) Identification and genetic characterization of new sources of beta- and gamma-tocopherol in sunflower germplasm. Helia 26:17–23

    Article  Google Scholar 

  • Velasco L, Domínguez J, Fernández-Martínez JM (2004) Registration of T589 and T2100 sunflower germplasms with modified tocopherol profiles. Crop Sci 44:361–362

    Article  Google Scholar 

  • Velasco L, Fernández-Cuesta Á, Fernández-Martínez JM (2014) New sunflower seeds with high contents of phytosterols. OCL 21:D604

    Article  Google Scholar 

  • Vlahakis C, Hazebroek J (2000) Phytosterol accumulation in canola, sunflower, and soybean oils:effects of genetics, planting location, and temperature. J Am Oil Chem Soc 77:49–53

    Article  CAS  Google Scholar 

  • Vranceanu VA, Stoenescu FM (1969) Pollen fertility restorer gene from cultivated sunflower (Helianthus annuus L). Euphytica 20(4):536–541

    Google Scholar 

  • Warburton ML, Rauf S, Marek L et al (2017) The use of crop wild relatives for crop improvement. Crop Sci 57:1–14

    Article  CAS  Google Scholar 

  • Weston B, McNevin G, Carlson D (2012) Clearfield® plus technology in sunflowers. In: Proceedings of the XVIII Sunflower Conference, Mar del Plata-Balcarce, Argentina, pp 149–154

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix I: Research Institutes Relevant to Sunflower

Institution

Specialization and research activities

Website

All Russian Research Institute of Oil Crops, VNIIMK, Russia

Seed production, varietal development and testing, equipment for oil quality analyses, crop husbandry techniques

http://en.vniimk.ru/about/

Trakya Agricultural Research Institute, Turkey

Development of herbicide resistant hybrids

https://ttae.academia.edu/Departments/Sunflower/Documents

INRA Toulouse, France

Genetic resource of wild and cultivated sunflower, disease resistant breeding, genetic resistant against the broomrape

http://www.toulouse.inra.fr/en/contents/list/2519/inra_all/(word)/sunflower/(iLimit)/5/(type)/inra_actualite

Oilseed Research Institute, Faisalabad

Sunflower hybrid development for high yield and oil quality

https://aari.punjab.gov.pk/faqs_ori

Institute of Field and Vegetable Crops, Serbia

Development of sunflower hybrids for high yield potential, high oleic acid, herbicide resistance and confectionary purpose

http://www.nsseme.com/en/products/?opt=oilcrops&cat=products

National Agriculture Technology Institute

Genetic resource and wild species, resistance against biotic stress and herbicide

https://inta.gob.ar/documentos/argentina-national-institute-of-agricultural-technology-inta

Sunflower and Plant Biology Research, Fargo, North Dakota, USA

Genetic enhancement of yield and tolerance to biotic stress, novel weed management solutions

https://www.ars.usda.gov/plains-area/fargo-nd/rrvarc/sun/

Indian Institute of oilseed Research India

Seed production, varietal development and testing, crop husbandry techniques

http://www.icar-iior.org.in/index.php/aicrp-centres/sunflower#

Institute for sustainable agriculture

Development of high quality sunflower genotype, mutation breeding

http://www.ias.csic.es/en/

Directorate of oilseed Research India

Germplasm resources, tissue culture, molecular genetics, disease resistant

http://icar-iior.org.in/index.php/component/content/frontpage

Seed and Plant Improvement Institute, Iran

Genetic resources, molecular markers and disease resistance

https://www.gfar.net/organizations/seed-and-plant-improvement-institute

Oil crop research institute

Germplasm resource maintenance, breeding sunflower for various objectives

http://en.oilcrops.com.cn/

1.2 Appendix II: Sunflower Genetic Resources

Cultivar

Important traits

Cultivation location

Mas 88.OL

Mas 83. R

High oleic acid

Broom rape E tolerant

Maïsadour Semences SA, France – Europe

Parsun-3

High yield and stress tolerance

NARC, Islamabad, Pakistan

DRSH-1 (PCSH 243)

High yield

India

PHB 65A70

High yield, early maturity and resistant to disease

DUPONT, Pioneer, South Africa

7111

CLEARFIELD , Herbicide resistance

Syngenta, World wide

3080

NUSUN Mid oleic acid (55-75)

USA

Camaro II

NUSUN CLEARFIELD Mid oleic acid and herbicide resistance

USA

432E

DuPont ExpressSun (Herbicide resistant)

USA

E76437

High oleic acid, CLEARFIELD

USA

6946 DMR

Downey mildew resistant

Canada

Jaguar DMR

CLEARFIELD and Downey mildew resistant

Canada

PARAISO 1000

CLEARFIELD PLUS and disease resistant

Germany

VELEKA

Orobanche resistant hybrid

Germany

VNIIMK 6540 (k-1872), VNIIMK 8883 (k-1961), VNIIMK 8931 (k-1942), Armavirskii 1813 (k-1588), Armavirskii 3497 (k-1960)

High oil contents (47–51%)

Russia

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rauf, S. (2019). Breeding Strategies for Sunflower (Helianthus annuus L.) Genetic Improvement. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Industrial and Food Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-23265-8_16

Download citation

Publish with us

Policies and ethics