Skip to main content

Oil Palm (Elaeis spp.) Breeding in Malaysia

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Industrial and Food Crops

Abstract

The planted area of oil palm has grown to over 5.81 million ha by 2017, uplifting the economy and livelihood of Malaysians over the last 100 years since its beginning as a plantation crop in 1917. The narrowness of the active gene pool was recognized as one of the major drawbacks to a successful and rapid selection progress in oil palm breeding. The industry has made significant strides by incorporating germplasm material sourced from its center of origin in Africa and South America into on-going breeding programs. This resulted in the development of 13 new types of genetic material (PS series) by the Malaysian Palm Oil Board that have been distributed to the industry. An active tissue culture program has also facilitated cloning of high yielding palms, where clonal uniformity offers the opportunity to increase yields of up to 30%. Research and development efforts to further improve the productivity of oil palm received a boost when its genome was sequenced and released in 2013, which laid the foundation for applying genome-based technologies in oil palm research. With the discovery of a few genes at the molecular level together with oil palm genome, sequence data, we expect further integration of conventional and molecular breeding. Biotechnology research is the core area to opening up new avenues for oil palm improvement toward an era of precision agriculture and sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd Rahim S, Mohd Ramdhan K, Mohd Solah D (2010) Enhancing field mechanization in oil palm management. Oil Palm Bull 61:1–10

    Google Scholar 

  • Abdelnour-Esquivel A, Villalobos V, Engelmann F (1992) Cryopreservation of zygotic embryos of Coffea sp. CryoLetters 13:297–302

    Google Scholar 

  • Abraham R, Riemersma RA, Wood D et al (1989) Adipose fatty acid composition and the risk of serious ventricular arrhythmias in acute myocardial infarction. Am J Cardiol 63:269–272

    Article  CAS  PubMed  Google Scholar 

  • Abrizah O, Lazarus C, Fraser T et al (2000) Cloning of palmitoyl-acyl carrier protein thioesterase from oil palm. Biochem Soc Trans 28:619–622

    Article  Google Scholar 

  • Ainie K, Khusairi A, Ym C (2015) Malaysian sustainable palm oil. Oil Palm Bull 71:1–7

    Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role and industrial uses of bacterial polyhydroxylalkanoates. Microbiol Rev 54:450–472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azman I (2013) The effect of labour shortage in the supply and demand of palm oil in Malaysia. Oil Palm Ind Econ J 13(2):15–26

    Google Scholar 

  • Babu BK, Marthur RK, Naveen Kumar P et al (2017) Development, identification and validation of CAPS marker for SHELL trait which governs dura, pisifera and tenera fruit forms in oil palm (Elaeis guineensis Jacq.). PLoS One 12(2):e0171933. https://doi.org/10.1371/journal.pone.0171933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai B, Wang L, Lee M et al (2017) Genome-wide identification of markers for selecting higher oil content in oil palm. BMC Plant Biol 17:93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajaj YPS (1984) Introduction of growth in frozen embryos of coconut and ovules of citrus. CryoLetters 23:1215–1216

    Google Scholar 

  • Barcelos E, De Almeida RS, Cunha RNV et al (2015) Oil palm natural diversity and the potential for yield improvement. Front Plant Sci 6:190. https://doi.org/10.3389/Fpls.2015.00190

    Article  PubMed  PubMed Central  Google Scholar 

  • Basri MW (2003) Prioritising future products for the oil palm industry. Renaissance Palm Garden Hotel, IOI Resort, Putrajaya, 31 Mar 2003

    Google Scholar 

  • Basri MW, Arif MS (2010) Replanting: the way forward for a sustainable and competitive industry. Oil Palm Ind Econ J 10(2):29–38

    Google Scholar 

  • Basri MW, Halim AH, Hitam AH (1983) Current status of Elaeidobius kamerunicus Faust and its effects on the oil palm industry in Malaysia. PORIM occasional paper 6

    Google Scholar 

  • Beirnaert A (1935) Introduction à la biologie florale du palmier à huile (Elaeis guineensis Jacquin). Publ Inst Nat Etude Agron Congo Belge Ser Sci 5:3–42

    Google Scholar 

  • Beirnaert A, Vanderweyen R (1941) Contribution a l’etude genetique et biometrique des varieties d’ Elaeis guineensis Jacq. Publ Inst Nat Etude Agron Congo Belge Ser Sci 27:1–101

    Google Scholar 

  • Billotte N, Marseillac N, Risterucci AM et al (2005) Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 110:754–765

    Article  CAS  PubMed  Google Scholar 

  • Billotte N, Jourjon MF, Marseillac N et al (2010) QTL detection by multi-parent linkage mapping in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 120:1673–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaak G, Sparnaaij LD, Mendez T (1963) Breeding and inheritance in oil palm (E. guineensis Jacq.). II. Methods of bunch quality analysis. J West Afr Inst Oil Palm Res 4:146–145

    Google Scholar 

  • Chan PL, Siti Nor Akmar A, Roohaida O (2008) Light-harvesting chlorophyll A/B binding protein (LHCB) promoter for targeting specific expression in oil palm leaves. J Oil Palm Res (Special Issue July):21–29

    Google Scholar 

  • Cheah SC, Sambanthamurthi R, Siti Nor Akmar A et al (1995) Towards genetic engineering of oil palm. In: Kader JC, Mazliak P (eds) Plant lipid metabolism. Kluwer Academic, Dordrecht, pp 570–572

    Chapter  Google Scholar 

  • Cheah SC, Maria M, Rajinder S (2002) Genome analysis laboratory for oil palm (GALOP). MPOB information series, TT 157, pp 1–2

    Google Scholar 

  • Chevalier A (1934) La patrie des divers Elaeis, les especes et les varietes. Rev Bot Appl Agric Trop 14:187

    Google Scholar 

  • Chua KL, Singh R, Cheah SC (2001) Construction of oil palm (Elaeis guineensis Jacq.) linkage maps using AFLP markers. In: Proceedings of agriculture conference, international palm oil congress. Kuala Lumpur, p 461

    Google Scholar 

  • Chuenpom N, Volkaert H (2017) Association mapping identifies markers linked with yield traits in an oil palm breeding population. Thai J Sci Technol 6:393–405

    Google Scholar 

  • Cook OF (1942) A Brazilian origin for the commercial oil palm. Sci Mon 54:577

    Google Scholar 

  • Corley RHV (1998) What is the upper limit to oil extraction ratio? In: Proceedings oil and kernel production in oil palm – a global perspective. Palm Oil Research Institute Malaysia, pp 256–269

    Google Scholar 

  • Corley RHV (2006) Potential yield of oil palm – an update. International society for oil palm breeders symposium. Yield potential in oil palm II, Phuket, Thailand, Nov 2006

    Google Scholar 

  • Corley RHV, Breure CJ (1981) Measurements in oil palm experiments. Internal report. Unipamol Malaysia Sdn Bhd and Harrisons Fleming Advisory Services

    Google Scholar 

  • Corley RHV, Gray BS (1976a) Growth and morphology. In: Corley RHV, Hardon JJ, Wood BJ (eds) Oil palm research. Elsevier, Amsterdam, pp 7–21

    Google Scholar 

  • Corley RHV, Gray BS (1976b) Yield and yield components. In: Corley RHV, Hardon JJ, Wood BJ (eds) Oil palm research. Elsevier, Amsterdam, pp 77–86

    Google Scholar 

  • Corley RHV, Tinker PB (2003) The oil palm, 4th edn. Blackwell Science, Oxford, pp 133–199

    Book  Google Scholar 

  • Corley RHV, Tinker PB (2016) The oil palm, 5th edn. Wiley, Chichester

    Google Scholar 

  • Corley RHV, Wood BJ, Hardon JJ (1976) Future developments in oil palm cultivation. In: Corley RHV, Hardon JJ, Wood BJ (eds) Oil palm research. Elsevier, Amsterdam

    Google Scholar 

  • Corner EJH (1966) The natural history of palms. Weidenfeld and Nicolson, London

    Google Scholar 

  • Crone GR (1937) The voyages of Cadamosto and other documents on Western Africa in the second half of the fifteenth century. Hakluyt society series II

    Google Scholar 

  • Cros D, Denis M, Sánchez L et al (2015) Genomic selection prediction accuracy in a perennial crop: case study of oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 128:397–410

    Article  PubMed  Google Scholar 

  • De Touchet B, Duval Y, Pannetier C (1991) Plant regeneration from embryogenic suspension cultures of oil palm (Elaeis guineensis Jacq.). Plant Cell Rep 10:529–532

    Article  PubMed  Google Scholar 

  • Duke JA (1983) Elaeis guineensis Jacq. Purdue University, USA. http://www.hort.purdue.edu/newcrop/duke_energy/Elaeis_guineensis.html

  • Dumet D, Engelmann F, Chabrillange N et al (1993) Cryopreservation of standard oil palm (Elaeis guineensis Jacq.) somatic embryos involving a desiccation step. Plant Cell Rep 12:352–355

    Article  CAS  PubMed  Google Scholar 

  • Elkington JB (1984) Blending of new and traditional technologies – case studies. Bioresources Ltd and Associate Editor of Biotechnology Bulletin, UK

    Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379. https://doi.org/10.1371/journal.pone.0019379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelmann F (1991) In vitro conservation of tropical plant germplasm – a review. Euphytica 57:227–243

    Article  Google Scholar 

  • Engelmann F (2000) Importance of cryopreservation of plant genetic resources. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm. Current research progress and applications, JIRCAS, Tsukuba/IPGRI, Rome, pp 8–20

    Google Scholar 

  • Engelmann F (2004) Plant cryopreservation: progress and prospects. In Vitro Cell Dev Biol Plant 40:427–433

    Article  Google Scholar 

  • Engelmann F, Duval Y, Dereuddre J (1985) Survie et proliferation d’embryons somatiques de palmier huile (Elaeis guineensis Jacq.) Après congélation dans l’azote liquide. Compt Rend I’Acad Sci Paris, Série 301:111–116

    CAS  Google Scholar 

  • Esnan AG, Idris O (2009) Perusahaan sawit di Malaysia: satu panduan (edisi ketiga). Malaysian Palm Oil Board, Kuala Lumpur, pp 123–142

    Google Scholar 

  • Flint-Garcia SA, Thuillet AC, Yu J et al (2005) Maize association population: a high resolution platform for quantitative trait locus dissection. Plant J 44:1054–1064

    Article  CAS  PubMed  Google Scholar 

  • Gascon JP, de Berchoux C (1964) Caractèristiques de la production d’Elaeis guineensis (Jacq.) de diverses origines et leurs croisements. Application a la sèlection du palmier a huile. Olèagin 19:75–84

    Google Scholar 

  • Gerritsma W, Wessel M (1997) Oil palm: domestication achieved? Neth J Agric Sci 45:463–475

    Google Scholar 

  • Ghesquiere M (1984) Enzyme polymorphism in oil palm (Elaeis guineensis Jacq.) I. Genetic control of nine enzyme systems. Oleag 39:561–574

    CAS  Google Scholar 

  • Ghesquiere M (1985) Enzyme polymorphism in oil palm (Elaeis guineensis Jacq.) II. Variability and genetic structure of seven origins of oil palm. Oleag 40:529–540

    CAS  Google Scholar 

  • Goddard ME, Hayes BJ (2007) Genomic selection. J Anim Breed Genet 124:323–330

    Article  CAS  PubMed  Google Scholar 

  • Goh KJ (2000) Climatic requirements of the oil palm for high yields. In: Goh KJ (ed) Managing oil palm for high yields: agronomic principles. Malaysian Society of Soil Science and Param Agricultural Surveys, Kuala Lumpur, pp 1–17

    Google Scholar 

  • Grout BWW, Sheltan K, Prichard HW (1983) Orthodox behaviour of oil palm seed and cryopreservation of the excised embryos for genetic conservation. Ann Bot 52:381–384

    Article  Google Scholar 

  • Hama-Ali EO, Tan SG (2014) Using monomorphic microsatellite markers in oil palm (Elaeis guineensis). Res Rev J Bot Sci 3:1–6

    Google Scholar 

  • Hardon JJ (1984) The oil palm. In: Leon J (eds) Handbook of plant introduction in tropical crops. FAO agricultural studies 93. Rome, pp 75–89

    Google Scholar 

  • Hardon JJ, Thomas RL (1968) Breeding and selection of the oil palm in Malaya. Oleagin 3:85–90

    Google Scholar 

  • Hardon JJ, Rao V, Rajanaidu N (1985) A review of oil palm breeding. In: Russel GE (ed) Progress in plant breeding. Butterworths, London, pp 139–163

    Chapter  Google Scholar 

  • Hartley CWS (1988) The oil palm, 3rd edn. Longman, Harlow

    Google Scholar 

  • Hayati A, Wickneswari R, Maizura I et al (2004) Genetic diversity of oil palm (Elaeis guineensis Jacq.) germplasm collections from Africa: implications for improvement and conservation of genetic resources. Theor Appl Genet 108:1274–1284

    Article  CAS  PubMed  Google Scholar 

  • Henderson A (1986) Barcella odora. Principes 30:74–76

    Google Scholar 

  • Idris AS (2011) Biology, detection, control and management of Ganoderma in oil palm. In: Basri MW, Choo YM, Chan KW (eds) Further advances in oil palm research (2000–2010). Malaysian Palm Oil Board, Kuala Lumpur, pp 485–521

    Google Scholar 

  • Idris AS (2012) Latest research and management of Ganoderma disease in oil palm. Proceedings of the fourth IOPRI-MPOB international seminar: existing and emerging pests and disease of oil palm advances in research and management. Grand Royal Panghegar Hotel, Bandung, Indonesia, 13–14 December 2012, pp 1–23

    Google Scholar 

  • Idris AS, Ariffin D, Swinburne TR et al (2000) The identity of Ganoderma species responsible for basal stem rot disease of oil palm in Malaysia – pathogenity test. MPOB information series, TT 77

    Google Scholar 

  • Idris AS, Azahar T, Wahid O et al (2009) Spatial pattern and hotspot analyses of Ganoderma disease in oil palm plantations using the geographical information system. MPOB information series, TS 62

    Google Scholar 

  • Idris AS, Mohd Shukri I, Norman K et al (2014) GanoCare™ reducing risk of Ganoderma infection in oil palm. MPOB information series, TT no 545

    Google Scholar 

  • Idris AS, Mohd Shukri I, Norman K et al (2015) Chemical fertilizer GanoCare™ as preventive treatment in controlling Ganoderma disease of oil palm. MPOB information series, TT 564

    Google Scholar 

  • Index Mundi (2018) Palm oil production by country. https://www.indexmundi.com/agriculture/?commodity=palm-oil

  • Ismail A, Mamat MN (2002) The optimal age of oil palm replanting. Oil Palm Industry Economic Journal 2(1): 11–18

    Google Scholar 

  • Jack PL, James C, Price Z et al (1998) Application of DNA markers in oil palm breeding. In: Jatmika A (ed) Int oil palm conf commodity of the past, today and the future. Indonesian Oil Palm Research Institute, Medan, pp 315–324

    Google Scholar 

  • Jacquin NJ (1763) Selectarum stirpium Americanarum historia

    Google Scholar 

  • Jalani BS, Ariffin D (1994) Quality practices in R&D in the plantation sector. In: Proceedings of the palm oil quality conference. Palm Oil Research Institute of Malaysia, pp 42–52

    Google Scholar 

  • Janssens P (1927) Le palmier à huile au Congo Portugais et dans I’enclave de Cabinda. Descriptions des principales variétés de palmier (Elaeis guineensis). Bull Agric Congo Belge 18:29–92

    Google Scholar 

  • Jeennor S, Volkaert H (2014) Mapping of quantitative trait loci (QTLs) for oil yield using SSRs and gene-based markers in African oil palm (Elaeis guineensis Jacq.). Tree Genet Genomes 10:1–4

    Article  Google Scholar 

  • Jones LH (1974) Propagation of clonal oil palms by tissue culture. Oil Palm News 17:1–8

    Google Scholar 

  • Kamil NN, Omar SF (2016) Climate variability and its impact on the palm oil industry. Oil Palm Ind Econ J 16(1):18–30

    Google Scholar 

  • Khaw CH, Ng SK (1998) Performance of commercial scale clonal oil palm (Elaeis guineensis Jacq.) planting in Malaysia. Acta Hortic 461:251–258

    Article  Google Scholar 

  • Kim HU, Lee KR, Go YS et al (2011) Endoplasmic reticulum-located pdat1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants. Plant Cell Physiol 52:983–993

    Article  CAS  PubMed  Google Scholar 

  • Knutzon DS, Thompson GA, Radke SE et al (1992) Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc Natl Acad Sci USA 89:2624–2628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kushairi A (1992) Prestasi baka kelapa sawit dura × pisifera di Malaysia. MSc thesis, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia

    Google Scholar 

  • Kushairi A (2009) Role of oil palm breeding in wealth creation and quality of life. In: Proceedings of the 8th Malaysia Congress on Genetics, Genting Highlands, Malaysia, Aug 2009

    Google Scholar 

  • Kushairi A (2017) A vision for transformation of the oil palm industry. Paper presented at the MPOB international palm oil congress, Kuala Lumpur, Malaysia, 14–16 Nov 2017

    Google Scholar 

  • Kushairi A, Rajanaidu N (2000) Breeding populations, seed production and nursery management. In: Yusof B, Jalani BS, Chan KW (eds) Advances in oil palm research, vol 1. Malaysian Palm Oil Board, Kuala Lumpur, pp 39–96

    Google Scholar 

  • Kushairi A, Rajanaidu N, Jalani BS et al (1999) PORIM oil palm planting materials. PORIM Bull 38:1–13

    Google Scholar 

  • Kushairi A, Tarmizi AH, Zamzuri I et al (2010) Production, performance and advances in oil palm tissue culture. Paper presented at the ISOPB international seminar on advances in oil palm tissue culture, Yogyakarta, Indonesia, 29 May 2010

    Google Scholar 

  • Kushairi A, Singh R, Ong-Abdullah M (2017) The oil palm industry in Malaysia: thriving with transformative technologies. J Oil Palm Res 29(4):431–439

    Google Scholar 

  • Kwong QB, Ong AL, Teh CK et al (2017) Genomic selection in commercial perennial crops: applicability and improvement in oil palm (Elaeis guineensis Jacq.). Sci Rep 7:2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langeveld JWA, Guisson R, Stichnothe H (2016) Technical report on mobilising sustainable supply chains-biogas cases. IEA Bioenergy. https://www.ieabioenergy.com/wp-content/uploads/2018/01/EA-Bioenergy-Task-43-TR2016-32.pdf

  • Latiff A (2000) The biology of the genus Elaeis. In: Yusof B, Jalani BS, Chan KW (eds) Advances in oil palm research, vol 1. Malaysian Palm Oil Board, Kuala Lumpur, pp 19–38

    Google Scholar 

  • Lim KC, Zaharah AR (2002) The effects oil palm empty fruit bunches on oil palm nutrition and yield, and soil chemical properties. J Oil Palm Res 14(2):1–9

    Google Scholar 

  • Liu Q, Singh S, Green A (2000) Genetic modification of cottonseed oil using inverted repeat gene silencing techniques. Biochem Soc Trans 28:927–929

    Article  CAS  PubMed  Google Scholar 

  • Low ET, Alias H, Boon SH et al (2008) Oil palm (Elaeis guineensis Jacq.) tissue culture ESTs: identifying genes associated with callogenesis and embryogenesis. BMC Plant Biol 8:62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maizura I, Rajanaidu N, Zakri AH et al (2006) Assessment of genetic diversity in oil palm (Elaeis guineensis Jacq.) using restriction fragment length polymorphism (RFLP). Genet Resour Crop Evol 53:187–195

    Article  CAS  Google Scholar 

  • Makeen AM, Normah MN, Dussert S et al (2005) Cryopreservation of whole seeds and excised embryogenic axes of Citrus suhuiensis cv. Limau langkat in accordance to their desiccation sensitivity. Cryolet 26:259–268

    Google Scholar 

  • Manaf MAA, Abrizah O, Umi Salamah R (2005) Characterization of genes encoding key enzymes in oil synthesis in the oil palm. In: Proceeding of agriculture, biotechnology & sustainability, international Palm Oil Congress (PIPOC 2005), pp 583–606

    Google Scholar 

  • Marshall DR, Brown AHD (1975) Optimum sampling strategies in genetic conservation. In: Frankel OH, Hawkes JG (eds) Crop genetic resources for today and tomorrow. Cambridge University Press, Cambridge, UK, pp 53–80

    Google Scholar 

  • Masani AMY, Parveez GKA (2008) Development of transformation vectors for the production of high oleate transgenic oil palm. Electron J Biotechnol 11(3). http://ejbiotechnology.info/content/vol11/issue3/full/11/index.html. ISSN 0717-3458

  • Masani MYA, Parveez GKA, Izawati AMD et al (2009) Construction of PHB and PHBV multiple-gene vectors driven by an oil palm leaf-specific promoter. Plasmid 62:191–200

    Article  CAS  PubMed  Google Scholar 

  • Masura SS, Parveez GKA, Ismail I (2010) Isolation and characterization of oil palm constitutive promoter derived from ubiquitin extension protein (uep1) gene. New Biotechnol 27:289–299

    Article  CAS  Google Scholar 

  • Masura SS, Parveez GKA, Eng Ti LL (2011) Isolation and characterization of oil palm constitutive promoter derived from translationally control tumor protein (TCTP) gene. Plant Physiol Biochem 49:701–708

    Article  CAS  PubMed  Google Scholar 

  • Maxted N, Ford Lloyd BV, Hawkes JG (1997) Plant genetic conservation: the in situ approach. Chapman and Hall, London

    Google Scholar 

  • Mayes S, Jack PL, Marshall DF et al (1997) Construction of RFLP genetic linkage map for oil palm (Elaeis guineensis Jacq). Genome 40:116–122

    Article  CAS  PubMed  Google Scholar 

  • Meunier J (1989) Advances in oil palm breeding: progress and prospects. International conference on palms and palm products. NIFOR, Nigeria, p 15

    Google Scholar 

  • Mohd Din A, Kushairi A, Isa M et al (2005a) MPOB strategic plan for fast track breeding programmes. Paper presented at 3 in 1 seminar. Hotel Palace of the Golden Horses, Kuala Lumpur, 7 March 2005

    Google Scholar 

  • Mohd Din A, Kushairi A, Maizura I et al (2005b) MPOB strategic plan for fast track breeding programmes. In: Proceedings of the 2005 national seminar on advances in breeding and clonal technologies for super yielding planting materials. Malaysian Palm Oil Board, pp 43–53

    Google Scholar 

  • Mohd Nor M (2003) Zero burning techniques in oil palm cultivation: an economic perspective. Oil Palm Ind Econ J 3(1):16–24

    Google Scholar 

  • MPOB (2009) Code of good agricultural practice for oil palm estates and smallholdings. Malaysian Palm Oil Board, Kuala Lumpur

    Google Scholar 

  • MPOB (2018) Overview of the Malaysian oil palm industry. http://palmoilis.mpob.gov.my/index.php/overview-of-industry/593-overview-of-industry-2017

  • MPOC (2018) Palm oil and the environment. http://www.mpoc.org.my/Palm_Oil_and_The_Environment.aspx

  • Ndon BA (2006) The oil palm (Elaeis guineensis Jacq). Concept Publications Ltd, Wallingford

    Google Scholar 

  • Normah MN, Reed BM, Yu YL (1994) Seed storage and cryoexposure behaviour in hazelnut (Corylus avellana l. cv. Barcellona). CryoLetters 15:315–322

    Google Scholar 

  • Nurniwalis AW, Arif MA, Idris AS (2009) An amplified internal transcribes spacer region – a potential marker to distinguish Ganoderma and oil palm DNA preparations. In: Proceeding of agriculture, biotechnology & sustainability, international palm oil congress (PIPOC 2009), vol 3, pp 1192–1204

    Google Scholar 

  • Okamoto A, Kishine S, Hiroshawa T et al (1996) Effect of oxygen-enriched aeration on regeneration of rice (Oryza sativa L.) cell culture. Plant Cell Rep 15:731–736

    Article  CAS  PubMed  Google Scholar 

  • Okoye MN, Bakoumé C, Uguru MI et al (2016) Genetic relationships between elite oil palms from Nigeria and selected breeding and germplasm materials from Malaysia via simple sequence repeat (SSR) markers. J Agric Sci 8:159–178

    Google Scholar 

  • Omar WSW, Willis LB, Rha C et al (2008) Isolation and utilization of acetyl-CoA carboxylase from oil palm. J Oil Palm Res (Special Issue, July):97–107

    Google Scholar 

  • Ong-Abdullah M, Ordway JM, Jiang N et al (2015) Loss of karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525:533–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ooi HS (2012) Applying green technology in the palm oil industry. Jurutera, pp 18–24

    Google Scholar 

  • Pamin K (1998) A hundred and fifty years of oil palm development in Indonesia: from Bogor Botanical Garden to the industry. In: Proceedings of 1998 International Oil Palm Conference: commodity of the past, today, and the future. Indonesian Oil Palm Research Institute, Medan, pp 3–23

    Google Scholar 

  • Parida SK, Mukerji M, Singh AK et al (2012) SNPs in stress-responsive rice genes: validation, genotyping, functional relevance and population structure. BMC Genomics 13:426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parveez GKA (2000) Production of transgenic oil palm (Elaeis guineensis Jacq.) using biolistic techniques. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants, vol 2. Kluwer Academic Publishers, Dordrecht, pp 327–350

    Google Scholar 

  • Parveez GKA (2003) Novel products from transgenic oil palm. Ag Biotech Net 5:1–8

    Google Scholar 

  • Parveez GKA (2017) Impact of biotechnology on the sustainable development of the oil palm industry: from research to application. Paper presented at the MPOB international palm oil congress, Kuala Lumpur, Malaysia, 14–16 Nov 2017

    Google Scholar 

  • Parveez GKA, Sambanthamurthi R, Siti Nor Akmar A et al (1999) Production of transgenic oil palm – current success and future considerations. In: Proceedings of the 1999 PORIM international palm oil congress, Kuala Lumpur, Malaysia, pp 3–13

    Google Scholar 

  • Parveez GKA, Abrizah O, Nurhafizah R et al (2010) Functional analysis of oil palm palmitoyl-acyl-ACP thioesterase (FatB) gene via down-regulation in a model plant: Arabidopsis thaliana. J Oil Palm Res 22:765–773

    Google Scholar 

  • Parveez GKA, Rasid OA, Sambanthamurthi R (2011) Genetic engineering oil palm. In: Wahid MB, Choo YM, Chan KW (eds) Further advances in oil palm research (2000–2010). Malaysian Palm Oil Board, Kuala Lumpur, pp 141–201

    Google Scholar 

  • Parveez GKA, Omar AR, Ahmad Tarmizi H et al (2012) Tissue culture and genetic engineering of oil palm. In: Palm oil: production, processing, characterization and uses, pp 87–135. https://doi.org/10.1016/B978-0-9818936-9-3.50007-1

  • Parveez GKA, Omar AR, Abdul Masani MY et al (2015) Biotechnology of oil palm: strategies towards manipulation of lipid content and composition. Plant Cell Rep 34:533–543

    Article  CAS  PubMed  Google Scholar 

  • Pootakham W, Jomchai N, Ruang-areerate P et al (2015) Genome-wide SNP discovery and identification of QTL associated with agronomic traits in oil palm using genotyping-by-sequencing (GBS). Genomics 105:288–295

    Article  CAS  PubMed  Google Scholar 

  • Rabechault H, Martin JP (1976) Multiplication vegetative du palmier a huile (Elaeis guineensis Jacq.) à l’aide de cultures de tissus foliaires. C R Acad Sci Paris 238:1735–1737

    Google Scholar 

  • Radhamani J, Chandel KPS (1992) Cryopreservation of embryonic axes of trifoliate orange (Poncirus trifoliate (l) raf.). Plant Cell Rep 11:204–206

    Article  CAS  PubMed  Google Scholar 

  • Rahimah AR, Cheah SC, Rajinder S (2006) Free-drying of oil palm (Elaeis guineensis) leaf and its effect on the quality of extractable DNA. J Oil Palm Res 18:296–304

    CAS  Google Scholar 

  • Rajanaidu N (1986) The oil palm (Elaeis guineensis) collections in Africa. In: Proceedings of international workshop on oil palm germplasm and utilisation. PORIM, Bangi, Malaysia, pp 59–83

    Google Scholar 

  • Rajanaidu N (1994) PORIM oil palm genebank. Palm Oil Research Institute of Malaysia, Bangi

    Google Scholar 

  • Rajanaidu N, Jalani BS (1994) Oil palm genetic resources – collection, evaluation, utilization and conservation. In: Presented at PORIM colloquium on oil palm genetic resources. Palm Oil Research Institute of Malaysia, Bangi, Malaysia, 13 Sept 1994

    Google Scholar 

  • Rajanaidu N, Rao V (1987) Oil palm genetic collections: their performance and use to the industry. In: Proceedings international oil conference in agriculture. Kuala Lumpur, Malaysia, pp 59–85

    Google Scholar 

  • Rajanaidu N, Arasu NT, Obasola CO (1979) Collection of oil palm (Elaeis guineensis) genetic material in Nigeria II. Phenotypic variation of natural populations. MARDI Res Bull 7:1–27

    Google Scholar 

  • Rajanaidu N, Rao V, Halim AH et al (1990) Genetic resources: new developments in oil palm breeding. Elaeis 1:1–10

    Google Scholar 

  • Rajanaidu N, Kushairi A, Rafii M et al (2000) Oil palm breeding and genetic resources. In: Yusof B, Jalani BS, Chan KW (eds) Advances in oil palm research, vol 1. Malaysian Palm Oil Board, Kuala Lumpur, pp 171–237

    Google Scholar 

  • Rajanaidu N, Ainul MM, Kushairi A et al (2013) Historical review of oil palm breeding for the past 50 years – Malaysian journey. In: Proceedings international seminar on oil palm breeding – yesterday, today and tomorrow. Kuala Lumpur, Malaysia, pp 11–28

    Google Scholar 

  • Rajinder S, Cheah SC, Madon M et al (2001) Genomic strategies for enhancing the values of the oil palm. In: International palm oil congress agriculture. Malaysian Palm Oil Board, Kuala Lumpur, pp 3–17

    Google Scholar 

  • Rajinder S, Rahimah AR, Ooi CL et al (2006) Microsatellite probes for fingerprinting of oil palm clones. MPOB information series, TT 305

    Google Scholar 

  • Ramli US, Sambanthamurthi R, Rasid OA et al (2012) The isolation and characterisation of oil palm (Elaeis guineensis Jacq.) b-ketoacyl-acyl carrier protein (ACP) synthase (KAS) II cDNA. J Oil Palm Res 24:1480–1491

    CAS  Google Scholar 

  • Rance KA, Mayes S, Price Z et al (2001) Quantitative trait loci for yield components in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 103:1302–1310

    Article  CAS  Google Scholar 

  • Rao V (1987) Important traits in oil palm selection. In: Proceedings of the colloquium on breeding and selection for clonal oil palms No 12. Palm Oil Research Institute of Malaysia, Kuala Lumpur, pp 21–33

    Google Scholar 

  • Rao V, Soh AC, Corley RHV et al (1983) A critical reexamination of the method of bunch quality analysis in oil palm breeding. PORIM Occasional paper 9

    Google Scholar 

  • Reed BM, Kovalchuk I, Kushnarenko S et al (2004) Evaluation of critical points in technology transfer of cryopreservation protocols to international plant conservation laboratories. CryoLetters 25:341–352

    PubMed  Google Scholar 

  • Reinhoud PJ, Iren FV, Kijne JW (2000) Cryopreservation of undifferentiated plant cells. In: Englemann F, Takagi H (eds) Cryopreservation of tropical plant germplasm. IPGRI, Rome

    Google Scholar 

  • Rival A (2000) Somatic embryogenesis in oil palm. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants. Kluwer, Dordrecht, pp 249–290

    Chapter  Google Scholar 

  • Rival A, Bertrand L, Beulé T et al (1998) Suitability of RAPD analysis for the detection of somaclonal variants in oil palm (Elaeis guineensis Jacq). Plant Breed 117:73–76

    Article  Google Scholar 

  • Rohani O, Sharifah SA, Mohd Rafi Y et al (2000) Tissue culture of oil palm. In: Yusof B, Jalani BS, Chan KW (eds) Advances in oil palm research, vol 1. Malaysian Palm Oil Board, Kuala Lumpur, pp 238–283

    Google Scholar 

  • Rohani O, Zamzuri I, Tarmizi AH (2003) Oil palm cloning: MPOB protocol. Issue 26 of MPOB Technology. Malaysian Palm Oil Board, Kuala Lumpur

    Google Scholar 

  • Rosenquist EA (1985) The genetic base of oil palm breeding populations. In: Proceedings of international workshop on oil palm germplasm and utilisation. Palm Oil Research Institute of Malaysia, Kuala Lumpur, pp 27–56

    Google Scholar 

  • Rosenquist EA (1986) The genetic base of oil palm breeding populations. In: Proceedings of international workshop on oil palm germplasm and utilisation. Palm Oil Research Institute of Malaysia, Kuala Lumpur, pp 24–56

    Google Scholar 

  • Safiza M, Abrizah O, Siti Nor Akmar A et al (2009a) Functional characterization of oil palm stearoyl-ACP desaturase by overexpression in wild-type Arabidopsis and complementation of fab2 mutant. In: Proceeding of agriculture, biotechnology & sustainability, international palm oil congress, pp 1229–1243

    Google Scholar 

  • Safiza M, Mohamad Arif AM, Abrizah O (2009b) Functional complementation study in Arabidopsis thaliana of oil palm lysophosphatidyl acyltransferases. In: Proceeding of agriculture, biotechnology & sustainability, international palm oil congress, pp 1244–1253

    Google Scholar 

  • Sakai A (1965) Determining the degree of frost-hardiness in highly hardy plants. Nature 185:393–394

    Article  Google Scholar 

  • Sam YY (1999) Cryopreservation of rubber (Hevea brasiliensis) zygotic embryos using vitrification technique. Master thesis, Putra Malaysia University, Selangor

    Google Scholar 

  • Sambanthamurthi R, Abrizah O, Umi Salamah R (1996) Towards understanding the biochemical factors that affect oil composition and quality in the oil palm. In: PIPOC-ISOPB international conference on oil and kernel production in oil palm. Kuala Lumpur, pp 27–28

    Google Scholar 

  • Sambanthamurthi R, Parveez GKA, Cheah SC (2000) Genetic engineering of oil palm. In: Yusof B, Jalani BS, Chan KW (eds) Advances in oil palm research, vol 1. Malaysian Palm Oil Board, Kuala Lumpur, pp 284–331

    Google Scholar 

  • Sambanthamurthi R, Siti Nor Akmar A, Parveez GKA (2002) Genetic manipulation of the oil palm-challenges and prospects. Planter 78:547–562

    Google Scholar 

  • Sambanthamurthi R, Rajinder S, Parveez GKA et al (2009) Opportunities for the oil palm via breeding and biotechnology. In: Jain SM, Priyadarshan PM (eds) Breeding plantation tree crops. Springer Science, New York, pp 377–421

    Chapter  Google Scholar 

  • Samsul Kamal R, Ishak Z, Malike FA et al (2018) Clonal palm series 2 (CPS2). MPOB information series, TT 634

    Google Scholar 

  • Sathish DK, Mohankumar C (2007) RAPD markers for identifying oil palm (Elaeis guineensis Jacq.) parental varieties (dura & pisifera) and the hybrid tenera. Indian J Biotechnol 6:354–358

    CAS  Google Scholar 

  • Sattar MN, Iqbal Z, Tahir MN et al (2017) CRISPR/Cas9: a practical approach in date palm genome editing. Front Plant Sci 8:1469

    Article  PubMed  PubMed Central  Google Scholar 

  • Seng TY, Siti Hawa MS, Chin CW et al (2011) Genetic linkage map of a high yielding Felda Deli×Yangambi oil palm cross. PLoS One 6(11):e26593. https://doi.org/10.1371/journal.pone.0026593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senior PJ, Dawes EA (1973) The regulation of poly-b-hydroxybutyrate metabolism in Azotobacter beijerinckii. Biochem J 134:225–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma M (2006) Challenges facing the Malaysian palm oil industry – multi pronged strategies for raising oil yield, productivity and profitability. In: Kushairi A, Ravigadevi S, Ong-Abdullah M, Chan KC (eds) Proc clonal & qty rep material. Malaysian Palm Oil Board, Bangi

    Google Scholar 

  • Sharma M, Tan YP (1999) Oil palm breeding programmes and the performance of DxP planting materials at United Plantations Berhad. In: Rajanaidu N, Jalani BS (eds) Proc seminar on sourcing of oil palm planting materials for local and overseas joint venture. Palm Oil Research Institute of Malaysia, Kuala Lumpur, pp 118–135

    Google Scholar 

  • Singh R, Tan SG, Panandam J et al (2009) Mapping quantitative trait loci (QTLs) for fatty acid composition in an interspecific cross of oil palm. BMC Plant Biol 9

    Google Scholar 

  • Singh R, Meilina O-A, Low E-TL et al (2013a) Oil palm genome sequence reveals divergence of interfertile species in old and new worlds. Nature 500:335–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Low E-TL, Meilina O-A et al (2013b) The oil palm VIRESCENS gene controls fruit colour and encodes a R2R3-MYB. Nat Commun 5:4106

    Article  CAS  Google Scholar 

  • Singh R, Ooi LC-L, Low ETL et al (2015) SureSawitTM VIR – a diagnostic assay to predict colour of oil palm fruits. MPOB information series, TT 568

    Google Scholar 

  • SIRIM (2008) Malaysian Standard MS2099: 2008. Oil Palm clones for commercial planting – specification for ortet selection. Department of Standards, Malaysia, pp 1–13

    Google Scholar 

  • Sisunandar RA, Turquay P, Samosir Y et al (2010) Cryopreservation of coconut (Cocos nucifera l.) zygotic embryos does not induce morphological, cytological or molecular changes in recovered seedlings. Planta 232(2):435–447

    Article  CAS  PubMed  Google Scholar 

  • Siti Nor Akmar A, Zubaidah R (2008) Mesocarp-specific metallothionein- like gene promoter for genetic engineering of oil palm. J Oil Palm Res (Special Issue July):1–8

    Google Scholar 

  • Siti Nor Akmar A, Cheah SC, Aminah S et al (1999) Characterization and regulation of oil palm (Elaies guineensis Jacq.) stearoyl-ACP desaturase genes. J Oil Palm Res (Special Issue):1–7

    Google Scholar 

  • Siti Ramlah AA, Ramle M, Norman K et al (2011) Microbial approach in pest control. In: Wahid MB, Choo YM, Chan KW (eds) Further advances in oil palm research (2000–2010). Malaysian Palm Oil Board, Kuala Lumpur, pp 407–456

    Google Scholar 

  • Smith EHG (1935) A note on recent research on empire products (extract from botanical section rep, S Provinces, Nigeria, Jan–June 1935). Bull Imp Inst Lond 33:371

    Google Scholar 

  • Soh AC (1986) Expected yield increase with selected oil palm clones from current DxP seedling materials and its implications on clonal propagation, breeding and ortet selection. Oleagin 41(2):51–56

    Google Scholar 

  • Soh AC (1987) Current issues in oil palm breeding. Malays Appl Biol 16:101–108

    Google Scholar 

  • Soh AC (2010) Review of strategies in breeding for oil palm clonal propagation. Proceeding in oil palm advanced tissue culture. In: The review of strategies in breeding for oil palm clonal propagation. International Society for Oil Palm Breeder (ISOPB). Hotel Santika, Yogjakarta, Indonesia, 29 May 2010

    Google Scholar 

  • Soh AC (2011) Genomics and plant breeding. J Oil Palm Res 23:1019–1028

    CAS  Google Scholar 

  • Soh AC, Wong G, Tan CC et al (2001). Recent advances towards commercial production of elite oil palm clones. In: Proceedings of agriculture conference, international palm oil congress. Kuala Lumpur, pp 33–44

    Google Scholar 

  • Soh AC, Wong G, Tan CC et al (2006) Advances and issues in commercial propagation of oil palm clones. Paper presented at Ministry of Plantation Industry and Commodities Workshop, Kuala Lumpur, Malaysia

    Google Scholar 

  • Soh AC, Mayes S, Roberts JA (2017) Oil palm breeding: genetics and genomics. CRC Press, Boca Raton

    Book  Google Scholar 

  • Soto-Cerda BJ, Cloutier S (2012) Association mapping in plant genomes. InTech Open, pp 1–28. https://doi.org/10.5772/33005

  • Sparnaaij LD, Menendez T, Blaak G (1963) Breeding and inheritance in the oil palm (Elaeis guineensis Jacq.) part I the design of a breeding programme. West Afr Inst Oil Palm Res 4:126–155

    Google Scholar 

  • Suzana M, Rahimah AR, Maizura I et al (2015) A simple and rapid protocol for isolation of genomic DNA from oil palm leaf tissue. J Oil Palm Res 27(3):282–287

    CAS  Google Scholar 

  • Syahanim S, Abrizah O, Siti Nor Akmar A et al (2007) Cloning of an oleoyl-Coa desaturase from oil palm. In: Proceeding of agriculture, biotechnology & sustainability, international palm oil congress, pp 1001–1009

    Google Scholar 

  • Syed Alwee S, Row SH, Aw KT et al (2010) Progress of oil palm tissue culture in Felda and its challenge. Paper presented at the ISOPB seminar on advances in oil palm tissue culture. Yogjakarta, Indonesia, 29 May 2010

    Google Scholar 

  • Syed RA, Law IH, Corley RHV (1982) Insect pollination of oil palm: introduction, establishment and pollinating efficiency of Elaeidobius kamerunicus in Malaysia. Planter 58:547–561

    Google Scholar 

  • Tandon R, Chaudhury R, Shivana KR (2007) Cryopreservation of oil palm pollen. Curr Sci 92(2):182–183

    Google Scholar 

  • Tarmizi AH (2002) Oil palm liquid culture – MPOB protocol, MPOB information series, TT, pp 138–132

    Google Scholar 

  • Tarmizi AH, Zaiton R (2005) MPOB fast transfer technique (MoFaTT) in liquid culture system. MPOB information series, TT 261

    Google Scholar 

  • Tarmizi AH, Zaiton R (2006a) Simple impeller with fast transfer techniques (SLIM-FaTT) in liquid cultrure system. MPOB information series, TT 304

    Google Scholar 

  • Tarmizi AH, Zaiton R (2006b) Two-in-one MPOB-simple impeller (2 in 1 MO-SLIM) in liquid system. MPOB information series, TT 303

    Google Scholar 

  • Tarmizi AH, Zamzuri I, Meilina OA et al (2011) Forging ahead with clones. In: Wahid MB, Choo YM, Chan KW (eds) Further advances in oil palm research (2000–2010). Malaysian Palm Oil Board, Kuala Lumpur, pp 102–140

    Google Scholar 

  • Tarmizi AH, Zamzuri I, Samsul Kamal R et al (2017) P456 – 1st MPOB clonal oil palm series (CPS1). Malaysian commercialization year 2017. Technology Park Malaysia, Kuala Lumpur, 7 July 2017

    Google Scholar 

  • Teen YJ, Yunus AMM, Parveez GKA et al (2008) Activity studies, gene characterization and manipulation of 3-ketothiolase of oil palm (Elaeis guineensis Jacq.) mesocarp. J Oil Palm Res (Special Issue July):118–133

    Google Scholar 

  • Teixeira JB, Sondahl MR, Nakamura T et al (1995) Establishment of oil palm cell suspensions and plant regeneration. Plant Cell Tissue Organ Cult 40:105–111

    Article  Google Scholar 

  • Ting NC, Jansen J, Mayes S et al (2014) High density SNP and SSR-based genetic maps of two independent oil palm hybrids. BMC Genomics 15:309

    Article  PubMed  PubMed Central  Google Scholar 

  • Ting NC, Yaakub Z, Katialisa K et al (2016) Fine-mapping and cross-validation of QTLs linked to fatty acid composition in multiple independent interspecific crosses of oil palm. BMC Genomics 17:289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tisné S, Pomiès VR, Syahputra I et al (2017) Identification of Ganoderma disease resistance loci using natural field infection of an oil palm multiparental population. Genes Genomes Genet 7:1683–1692

    Google Scholar 

  • Uhl NW, Dransfield J (1988) Genera palmarum: a classification of palms based on the work of Harold E. Moore, Jr. (book review). S Afr J Bot 54(5):511–513

    Google Scholar 

  • Van De Loo F, Fox B, Somerville CR (1993) Unusual fatty acids. In: Moore T (ed) Plants lipids. CRC Press, Boca Raton, pp 91–126

    Google Scholar 

  • Verheye W (2010) Growth and production of oil palm. In: Verheye W (eds) Land use, land cover and soil sciences. Encyclopedia of life support systems (EOLSS). UNESCO-EOLSS Publishers, Oxford, pp 1–24

    Google Scholar 

  • Vignal A, Milan DM, Sancristobal M et al (2002) A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol 34:275–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams CN, Hsu YC (1970) Oil palm cultivation in Malaya: technical and economic aspects. University of Malaya Press, Kuala Lumpur

    Google Scholar 

  • Wong CK, Bernardo R (2008) Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet 11:815–824

    Article  CAS  Google Scholar 

  • Wong G, Chong SP, Tan CC et al (1999) Liquid suspension culture – a potential technique for mass production of oil palm clones. In: Proceedings of the 1999 PORIM international palm oil congress – emerging technologies and opportunities in the next millennium. Kuala Lumpur, Malaysia, pp 3–11

    Google Scholar 

  • Ying ST, Zaman FQ, Ling HC et al (2007) Flanking AFLP markers for the virescens traits in oil palm. J Oil Palm Res 19:381–392

    CAS  Google Scholar 

  • Yong YY, Mustafa Kamal M (2005) Breeding strategies for oil palm: Guthrie’s perspective. In: Proceedings of the 2005 national seminar on advances in breeding and clonal technologies for super yielding planting materials. Malaysian Palm Oil Board, pp 54–82

    Google Scholar 

  • Yu WC, Joyce PJ, Cameron DC et al (2000) Sucrose utilization during potatomicrotuber growth in bioreactors. Plant Cell Rep 19:407–413

    Article  CAS  PubMed  Google Scholar 

  • Yunus AMM, Kadir APG (2008) Development of transformation vectors for the production of potentially high oleate transgenic oil palm. Electron J Biotechnol 11(3). https://doi.org/10.2225/vol11-issue3-fulltext-7

  • Zaki NM, Singh R, Rosli R et al (2012) Elaeis oleifera genomic-SSR markers: exploitation in oil palm germplasm diversity and cross-amplification in Arecaceae. Int J Mol Sci 13:4069–4088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamzuri I (2001) Double-layer technique in rooting of oil palm in vitro plantlets. MPOB information series, TT no 99, pp 1–2

    Google Scholar 

  • Zamzuri I (2002) Flameless sterilizer. MPOB information series, TT 139

    Google Scholar 

  • Zeven AC (1967) The semi-wild oil palm and its industry in Africa. Wageningen University, Wageningen

    Google Scholar 

  • Zhou LX, Xiao Y, Xia W et al (2015) Analysis of genetic diversity and population structure of oil palm (Elaeis guineensis) from China and Malaysia based on species-specific simple sequence repeat markers. Genet Mol Res 14:16247–16254

    Article  CAS  PubMed  Google Scholar 

  • Zubaidah R, Siti Nor Akmar A (2005) The effects of metal ions on root-specific expression of the oil palm MT3-B gene promoter. In: Proceeding of agriculture, biotechnology & sustainability, international palm oil congress, pp 1104–1110

    Google Scholar 

  • Zulkifli Y, Norziha A, Naqiuddin MH et al (2017) Designing the oil palm of the future. J Oil Palm Res 29(4):440–455

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to extend their appreciation to Malaysian Palm Oil Board (MPOB) as well as the past and present directors general for their continuous support towards research and development programs for a better future of the oil palm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Parveez Ghulam Kadir .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix: I Research Institutes Relevant to Oil Palm Genetic Improvement

Institution

Specialization and research activities

Contact information and website

Malaysian Palm Oil Board

Genetically modified oil palm/gene function and transgenic technology

Dr. Abdul Masani Mat Yunus

Malaysian Palm Oil Board

No. 6, Persiaran Institusi

Bandar Baru Bangi

43000 Kajang, Selangor, Malaysia

Telephone: (6)0387693895

E-mail: masani@mpob.gov.my

Malaysian Palm Oil Board

Improvement and generation of elite oil palm planting materials/breeding and quantitative genetics

Dr. Mohd Din Amiruddin

Malaysian Palm Oil Board

No. 6, Persiaran Institusi

Bandar Baru Bangi

43000 Kajang, Selangor, Malaysia

Telephone: (6)0387694482

E-mail: mohddin@mpob.gov.my

CIRAD Agricultural Research for Development

Genomic selection in oil palm

Dr. David Cross

CETIC (African Center of Excellence in Information and Communication Technologies), University of Yaoundé 1, Yaoundé, Cameroon

E-mail: david.cros@cirad.fr

PalmElit SAS

Plant breeding in oil palm

Dr. Tristan Durand-Gasselin

PalmElit SAS

Parc Agropolis Bat. 14

2214 Boulevard de la Lironde

34980 Montferrier sur Lez France

Telephone: (33) 467457927

Fax: (33) 607301953

Email: tristan.durand-gasselin@palmelit.com

1.2 Appendix II: Oil Palm Genetic Resources in Malaysia

Cultivar

Species

Important traits

PS1

Elaeis guineensis

Dwarf

PS2

E. guineensis

High iodine value

PS3

E. guineensis

High kernel

PS4

E. oleifera

High carotene content

PS5

E. guineensis

Thin shell teneras

PS6

E. guineensis

Large fruit duras

PS7

E. guineensis

High bunch index

PS8

E. guineensis

High vitamin E

PS10

E. guineensis

Long stalk

PS11

E. guineensis

High carotene

PS12

E. guineensis

High oleic acid

PS13

E. guineensis

Low lipase

PS14

E. guineensis

High protein kernel

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad Malike, F. et al. (2019). Oil Palm (Elaeis spp.) Breeding in Malaysia. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Industrial and Food Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-23265-8_13

Download citation

Publish with us

Policies and ethics