Skip to main content

Abstract

The suboptimal productivity in cocoa farmers’ fields, particularly those of small-holders who produce over 80% of the global supply, and the demand for cocoa that meets stringent quality and flavor criteria necessitate enhanced breeding methods and outcomes. Progress in cacao breeding has been hindered by a long-generation cycle, limitations in land availability for large-scale breeding trials, and challenging abiotic and biotic stress factors, including several major diseases. Cacao tends to be outbreeding and cocoa production is often reduced by the incompatibility status of planting material and pollination inefficiency. The complex breeding mechanisms in cacao and difficulty in predicting the performance of promising selections as parents also pose challenges to breeders. Reciprocal recurrent selection schemes have been most successful to date. The advent of breeding with genomics and the unravelling of the cacao genome portend unprecedented advancements in cocoa breeding. This chapter explores the past, present and future prospects of cacao breeding, and describes how the use of traditional breeding allied with molecular and genomic approaches can empower cocoa breeders to meet the need for improved planting material with high productivity and yield efficiency, disease resistance, climate change adaptations, nutraceutical value and superior flavor and quality attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acquaah G (2012) Principles of plant genetics and breeding. John Wiley & Sons/Blackwell Publishing, Oxford

    Google Scholar 

  • Adomako B (2006) Combining ability analysis of black pod disease incidence in cocoa genotypes in Ghana. Trop Sci 46(4):201–204

    Article  Google Scholar 

  • Adomako B (2007) Causes and extent of yield losses in cocoa progenies. Trop Sci 47(1):22–25

    Article  Google Scholar 

  • Adomako B, Adu-Ampomah Y (2005) Assessment of the yield of individual cacao trees in four field trials. In: Eskes AB, Efron Y, End MJ, Bekele F (eds) Proceedings of the international workshop on cocoa breeding for improved production systems, Accra, Ghana, 19–21 Oct 2003. INGENIC, London, pp 41–49

    Google Scholar 

  • Adu-Ampomah Y (1996) The cocoa breeding programme in Ghana: achievements and prospects for the future. In: End MJ, Eskes AB, Lee MT, Lockwood G (eds) Proceedings of the international workshop on cocoa breeding strategies, Malaysia, Kuala Lumpur, 18–19 October 1994. MCB and INGENIC, London, pp 29–32

    Google Scholar 

  • Adu-Ampomah Y, Owusu GK, Sackey S et al (1996) Use of gamma rays to induce mutants resistant to cocoa swollen shoot disease in Theobroma cacao L. Plant Breed 115(1):74–76

    Article  Google Scholar 

  • Adu-Ampomah Y, Adomako B, Opoku IY (2006) Cocoa population breeding approaches in Ghana. In: Eskes AB, Efron Y (eds) Global approaches to cocoa germplasm utilization and conservation. Final report of the CFC/ICCO/IPGRI project on cocoa germplasm utilization and conservation: a global approach. CFC, Amsterdam, pp 41–46

    Google Scholar 

  • Adu-Gyamfi R, Wetten A (2012) Cryopreservation of cocoa (Theobroma cacao L.) somatic embryos by vitrification. CryoLetters 33(6):494–505

    PubMed  Google Scholar 

  • Adu-Gyamfi R, Wetten A, Lopez CMR (2016) Effect of cryopreservation and post-cryopreservation somatic embryogenesis on the epigenetic fidelity of cocoa (Theobroma cacao L.). PLoS One 11(7). https://doi.org/10.1371/journal.pone.0158857

  • Ahenkorah Y, Halm BJ, Appiah MR et al (1987) Twenty years’ results from a shade and fertilizer trial on Amazon cocoa (Theobroma cacao) in Ghana. Exp Agric 23(01):31–39

    Article  Google Scholar 

  • Ahnert D (2009) Ideotype breeding in cocoa. In: Bekele F, End M, Eskes AB (eds) Proceedings of the international workshop on cocoa breeding for farmers’ needs, San José, Costa Rica, 15–17 October 2006. INGENIC and CATIE, London, pp 157–166

    Google Scholar 

  • Aikpokpodion PO (2012) Defining genetic diversity in the chocolate tree, Theobroma cacao L. grown in West and Central Africa. In: Caliskan M (ed) Genetic diversity in plants. INTECH Open Access Publisher. http://www.intechopen.com/books/genetic-diversity-in-plants/defining-geneticdiversity-in-the-chocolate-tree-theobroma-cacao-l-grown-in-west-and-central-africa. Accessed 14 Aug 2015

  • Aikpokpodion PO, Adeogun SO (2011) A diagnostic study of constraints to achieving yield potentials of cocoa (Theobroma cacao L.) varieties and farm productivity in Nigeria. J Agr Sci 3(4):68–76

    Google Scholar 

  • Aikpokpodion PO, Badaru K, Kolesnikova-Allen M et al (2005) Farmer-researcher participatory on-farm selection of improved cocoa varieties: the Nigerian experience. In: Proceedings of the international workshop on cocoa breeding for improved production systems, Accra, Ghana, 19–21, October 2003. INGENIC, London, pp 183–188

    Google Scholar 

  • Aikpokpodion PO, Kolesnikova-Allen M, Adetimirin VO et al (2010) Population structure and molecular characterization of Nigerian field genebank collections of cacao, Theobroma cacao L. Silvae Genet 59(6):273–285

    Article  Google Scholar 

  • Aime MC, Phillips-Mora W (2005) The causal agents of witches’ broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae. Mycologia 97(5):1012–1022

    CAS  PubMed  Google Scholar 

  • Akrofi AY (2015) Phytophthora megakarya: a review on its status as a pathogen on cacao in West Africa. Afr Crop Sci J 23(1):67–87

    Google Scholar 

  • Akrofi AY, Amoako-Atta I, Assuah M, Asare EK (2015) Black pod disease on cacao (Theobroma cacao L) in Ghana: spread of Phytophthora megakarya and role of economic plants in the disease epidemiology. Crop Prot 72:66–75

    Article  Google Scholar 

  • Alemanno L, Berthouly M, Michaux-Ferrière N (1996) Histology of somatic embryogenesis from floral tissues cocoa. Plant Cell Tiss Org 46(3):187–194

    Article  Google Scholar 

  • Allegre M, Argout X, Boccara M et al (2012) Discovery and mapping of a new expressed sequence tag-single nucleotide polymorphism and simple sequence repeat panel for large-scale genetic studies and breeding of Theobroma cacao L. DNA Res 19:23–35. https://doi.org/10.1093/dnares/dsr039. Accessed 6 July 2015

    Article  CAS  PubMed  Google Scholar 

  • Alverson WS, Whitlock BA, Nyffeler R et al (1999) Phylogeny of the core Malvales: evidence from ndhF sequence data. Am J Bot 86(10):1474–1486

    Article  CAS  PubMed  Google Scholar 

  • Alvim P de T. (1977) Ecological and physiological determinants of cacao yield. In: Proceedings of the 5th internatnional cocoa research conference. Ibadan Nigeria, 1–9 September 1975, Cocoa Producers’ Alliance, London, pp 25–38

    Google Scholar 

  • Anga J-M (2014) The world cocoa economy: current status, challenges and prospects. Paper presented at the UNCTAD multi-year expert meeting on commodities and development, Geneva, Switzerland, 9–10 April 2014 http://unctad.org/meetings/en/Presentation/SUC_MEM2014_09042014_ICCO.pdf. Accessed 4 Dec 2015

  • Anim-Kwapong GJ, Frimpong EB (2005) Vulnerability of agriculture to climate change-impact of climate change on cocoa production. In: Final report submitted to the Netherlands climate change studies assistance Programme. http://www.nlcap.net/fileadmin/NCAP/Countries/Ghana/COCOA_DRAFT_FINAL_REP.pdf. Accessed 12 June 2015

  • Anon (1981) Report of IBPGR working group on genetic resources of cacao. ACP, IBPGR, Rome, IBPGR/80/56

    Google Scholar 

  • Antwi A (1994) The effects of water deficit on growth and development in young cocoa plants (Theobroma cacao L). MPhil thesis, University of the West Indies, St. Augustine, Trinidad and Tobago

    Google Scholar 

  • Araújo IS, de Souza Filho GA, Pereira MG et al (2009) Mapping of quantitative trait loci for butter content and hardness in cocoa beans (Theobroma cacao L.). Plant Mol Bio Rep 27(2):177–183

    Article  CAS  Google Scholar 

  • Argout X, Fouet O, Wincker P et al (2008) Towards the understanding of the cocoa transcriptome: production and analysis of an exhaustive dataset of ESTs of Theobroma cacao L. generated from various tissues and under various conditions. BMC Genomics 9:512. https://doi.org/10.1186/1471-2164-9-51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Argout X, Salse J, Aury JM et al (2011) The genome of Theobroma cacao. Nat Genet 43(2):101–108

    Article  CAS  PubMed  Google Scholar 

  • Argout X, Martin G, Droc G et al (2017) The cacao Criollo genome v2. 0: an improved version of the genome for genetic and functional genomic studies. BMC Genomics 18(1):730–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assemat S, Lachenaud P, Ribeyre F et al (2005) Bean quality traits and sensory evaluation of wild Guianan cocoa populations (Theobroma cacao L.). Genet Resour Crop Evol 52(7):911–917

    Article  Google Scholar 

  • Ávila-Lovera EL, Coronel I, Jaimez R et al (2016) Ecophysiological traits of adult trees of Criollo cocoa cultivars (Theobroma cacao L.) from a germplasm bank in Venezuela. Exp Agric 52(01):137–153

    Article  Google Scholar 

  • Azhar I (1988) Host plant resistance to cocoa pod borer – a research in progress. Paper presented at MARDI Senior Staff Conf. Kuala Lumpur, Malaysia, 1988

    Google Scholar 

  • Azhar I, Long GE (1996) Effect of cocoa pod age on egg distribution and egg parasitism of the cocoa pod borer in Malaysia. Entomol Exp Appl 81(1):81–89

    Article  Google Scholar 

  • Badrie N, Bekele F, Sikora E, Sikora M (2015) Cocoa agronomy, quality, nutritional, and health aspects. Crit Rev Food Sci 55(5):620–659

    Article  CAS  Google Scholar 

  • Bae H, Kim SH, Kim MS et al (2008) The drought response of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses. Plant Physiol Bioch 46(2):174–188

    Article  CAS  Google Scholar 

  • Bae H, Sicher RC, Kim MS et al (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60:3279–3296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey BA, Melnick RL, Strem MD et al (2014) Differential gene expression by Moniliophthora roreri while overcoming cacao tolerance in the field. Mol Plant Pathol 15(7):711–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balestre M, Von Pinho RG, Souza JC, Oliveira RL (2009) Potential use of molecular markers for prediction of genotypic values in hybrid maize performance. Genet Mol Res 8(4):1292–1306

    Article  CAS  PubMed  Google Scholar 

  • Baligar VC, Bunce JA, Machado RC, Elson MK (2008) Photosynthetic photon flux density, carbon dioxide concentration, and vapor pressure deficit effects on photosynthesis in cacao seedlings. Photosynthetica 46(2):216–221

    Article  CAS  Google Scholar 

  • Bartley BG (1957) Single plant selection in cacao improvement. In: Proceedings of VI reuniao do comité técnico interamericano de cacau 20–27 May 1956, pp 177–183

    Google Scholar 

  • Bartley BG (1967) Progress in cacao breeding and genetics. In: Proceedings of the first international cocoa research conference. Abidjan, Côte d’Ivoire, 15–20 November 1965, Cocoa Producers’ Alliance, Lagos, pp 228–232

    Google Scholar 

  • Bartley BG (1981) Global concepts for genetic resources and breeding in cacao. In: Proceedings of the international cocoa research conference, Douala, Cameroon, 4-12 November 1979, Cocoa Producers’ Alliance, Lagos, pp 519–525

    Google Scholar 

  • Bartley BG (1986) Cacao, Theobroma. In: Breeding for durable resistance in perennial crops. FAO Plant Production and Protection Paper, vol 70, pp 25–42

    Google Scholar 

  • Bartley BG (1996) A review of cocoa improvement: fundamentals, methods and results. In: End MJ, Eskes AB, Lee MT, Lockwood G (eds) Proceedings of the international workshop on cocoa breeding strategies, Kuala Lumpur Malaysia, 18–19 October 1994. INGENIC and Malaysian Cocoa Board, London, pp 3–17

    Google Scholar 

  • Bartley BG (2005) The genetic diversity of cacao and its utilization. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Bartley BG, Chalmers W (1970) Genetics and breeding. In: Annual report of Cacao Research Unit. Cocoa Research Unit, St. Augustine, pp 7–13

    Google Scholar 

  • Bartley BG, Cope FW (1973) Practical aspects of self-incompatibility in Theobroma cacao L. In: Moav R (ed) Agricultural genetics. Wiley, New York, pp 109–134

    Google Scholar 

  • Batley J, Edwards D (2007) SNP applications in plants. In: Association mapping in plants. Springer, New York, pp 95–102

    Chapter  Google Scholar 

  • Baudouin L, Baril C, Clément-Demange A et al (1997) Recurrent selection of tropical tree crops. Euphytica 96(1):101–114

    Article  Google Scholar 

  • Beebe S, Ramirez J, Jarvis A et al (2011) Genetic improvement of common beans and the challenges of climate change. Crop adaptation to climate change (Yadav SS, Redden RJ, Hatfield JL et al (eds)). John Wiley & Sons, Ltd., Richmond, published by Blackwell Publishing Ltd, pp 356–369

    Google Scholar 

  • Bekele F, Bekele I (1996) A sampling of the phenetic diversity of cacao in the International Cocoa Genebank of Trinidad. Crop Sci 36(1):57–64

    Article  Google Scholar 

  • Bekele F, Bekele I (2017) Social and environmental impacts on agricultural development. In: Ganpat W, Dyer R, Isaac W (eds) Agricultural development and food security in developing nations. IGI Global, Pennsylvania, pp 21–56. https://doi.org/10.4018/978-1-5225-0942-4.ch002

    Chapter  Google Scholar 

  • Bekele F, Butler DR (2000) Proposed list of cocoa descriptors for characterisation. Working procedures for cocoa germplasm evaluation and selection. In: Eskes AB, Engels JMM, Lass RA (eds) Proceedings of the CFC/ICCO/IPGRI project workshop. Montpellier, France, 1–6 February 1998. International Board for Plant Genetic Resources, Rome, pp 41–48

    Google Scholar 

  • Bekele FL, Kennedy AJ, Mc David C et al (1994) Numerical taxonomic studies on cacao (Theobroma cacao L.) in Trinidad. Euphytica 75(3):231–240

    Article  Google Scholar 

  • Bekele FL, Iwaro D, Bidaisee G (1996a) Evaluation of some economic characters of germplasm from the international cocoa Genebank, Trinidad. In: Annual report of the cocoa research unit for 1996. Cocoa Research Unit, St. Augustine, pp 19–33

    Google Scholar 

  • Bekele FL, Bidaisee G, Rampat R (1996b) A preliminary study of pod husk hardness of accessions in the international cocoa Genebank, Trinidad. In: Annual report of the cocoa research unit for 1996. Cocoa Research Unit, St. Augustine, pp 67–76

    Google Scholar 

  • Bekele F, Iwaro AD, Butler DR (2003) Potential value of cacao germplasm at the international cocoa Genebank, Trinidad (ICGT). In: Proceedings of the 13th international cocoa research conference, Kota Kinabalu, Malaysia, 9–14 October 2000. Cocoa Producers’ Alliance, Lagos, pp 219–227

    Google Scholar 

  • Bekele FL, Bekele I, Butler DR, Bidaisee GG (2006) Patterns of morphological variation in a sample of cacao (Theobroma cacao L.) germplasm from the international cocoa Genebank, Trinidad. Genet Res Crop Evol 53(5):933–948

    Article  Google Scholar 

  • Bekele FL, Butler DR, Bidaisee GG (2008a) Upper Amazon Forastero cacao (Theobroma cacao L.) 1: an assessment of phenotypic relationships in the international cocoa Genebank, Trinidad. Trop Agr (Trin) 85(1):1–15

    Google Scholar 

  • Bekele FL, Iwaro AD, Butler DR, Bidaisee GG (2008b) Upper Amazon Forastero cacao (Theobroma cacao L.) 2: an overview of Parinari clones from a breeder’s perspective. Trop Agr (Trin) 85(1):16–33

    Google Scholar 

  • Bekele FL, Bidaisee GG, Bhola J (2009) Examining phenotypic relationships among Trinitario and Refractario cacao clones conserved in the international cocoa Genebank, Trinidad. In: Annual report of the cocoa research unit for 2008. Cocoa Research Unit, St. Augustine, pp 30–36

    Google Scholar 

  • Bekele FL, Bidaisee G, Bhola J (2014) In search of superior traits of economic interest among cacao accessions from the international cocoa Genebank, Trinidad. In: Annual rep of the cocoa research unit for 2010. Cocoa Research Unit, St. Augustine. https://sta.uwi.edu/cru/documents/AR2010.pdf. Accessed 19 Feb 2016

    Google Scholar 

  • Bertrand B, Cilas C (1990) The use of true twins in experiments with cocoa. Café Cacao Thé 34(4):295–298

    Google Scholar 

  • Bong CL, Lee MT (1999) Resistance to vascular streak dieback: research and applications in breeding and disease management. In: Proceedings of the international workshop on the contribution of disease resistance to cocoa variety improvement, Salvador, Bahia, 24–26 November 1996, INGENIC, London, pp 195–204

    Google Scholar 

  • Borrone JW, Kuhn DN, Schnell RJ (2004) Isolation, characterization, and development of WRKY genes as useful genetic markers in Theobroma cacao. Theor Appl Genet 109(3):495–507

    Article  CAS  PubMed  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boza EJ, Irish BM, Meerow AW et al (2013) Genetic diversity, conservation, and utilization of Theobroma cacao L.: genetic resources in the Dominican Republic. Genet Resour Crop Evol 60(2):605–619

    Article  Google Scholar 

  • Boza EJ, Motamayor JC, Amores FM et al (2014) Genetic characterization of the cacao cultivar CCN 51: its impact and significance on global cacao improvement and production. J Am Soc Hortic Sci 139(2):219–229

    Article  CAS  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE et al (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Brady SM, Provart NJ (2007) Extreme breeding: leveraging genomics for crop improvement. J Sci Food Agr 87(6):925–929

    Article  CAS  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci 46(3):1323–1330

    Article  Google Scholar 

  • Briggs FN, Knowles PF (1967) Introduction to plant breeding. Reinhold, New York

    Google Scholar 

  • Brown JS, Schnell RJ, Motamayor JC et al (2005) Resistance gene mapping for witches’ broom disease in Theobroma cacao L. in an F2 population using SSR markers and candidate genes. J Am Soc Hortic Sci 130(3):366–373

    Article  CAS  Google Scholar 

  • Brown JS, Phillips-Mora W, Power EJ et al (2007) Mapping QTLs for resistance to Frosty Pod and Black Pod diseases and horticultural traits in Theobroma cacao L. Crop Sci 47(5):1851–1858

    Article  Google Scholar 

  • Brown JS, Sautter RT, Tondo CT et al (2008) A composite linkage map from the combination of three crosses made from commercial clones of cacao, T. cacao L. Trop Plant Biol 1(2):120–130

    Article  Google Scholar 

  • CacaoNet (2012) A global strategy for the conservation and use of cacao genetic resources, as the foundation for a sustainable cocoa economy. Laliberté B (compiler) Bioversity International, Montpellier. Accessed 23 Jul 2015. https://www.bioversityinternational.org/uploads/tx_news/A_global_strategy_for_the_conservation_and_use_of_cacao_genetic_resources__as_the_foundation_for_a_sustainable_cocoa_economy_1588.pdf

  • Carr MK, Lockwood G (2011) The water relations and irrigation requirements of cocoa (Theobroma cacao L.): a review. Exp Agr 47(04):653–676

    Article  Google Scholar 

  • Carvalho CD, Almeida CD, Cruz CD, Machado PF (2003) Hybrid cocoa tree adaptability and yield temporal stability in Rondônia State, Brazil. Crop Breed Appl Biot 3:237–244

    Article  Google Scholar 

  • Cervantes-Martinez C, Brown JS (2004) A haplotype-based method for QTL mapping of F1 populations in outbred plant species. Crop Sci 44(5):1572–1583

    Google Scholar 

  • Cervantes-Martinez C, Brown JS, Schnell RJ et al (2006) Combining ability for disease resistance, yield, and horticultural traits of cacao (Theobroma cacao L.) clones. J Am Soc Hortic Sci 131(2):231–241

    Article  Google Scholar 

  • Cheesman EE (1944) Notes on the nomenclature, classification and possible relationships of cacao populations. Trop Agric (Trinidad) 21:144–159

    Google Scholar 

  • Chong CF, Shepherd R (1986) Promising Prang Besar clones. In: Pushparajah E, Poh Soon C (eds) Cocoa and coconuts: progress and outlook. Incorporated Society of Planters, Kuala Lumpur, pp 3–19

    Google Scholar 

  • Cilas C (2005) How to improve the efficiency of individual cocoa tree selection for quantitative traits in progeny trials? In: Bekele F, End MJ, Eskes AM (eds) Proceedings of the international workshop on cocoa breeding for improved production systems. Accra, Ghana, 19–21 October, vol 2003. INGENIC and Ghana Cocoa Board, London, pp 33–40

    Google Scholar 

  • Cilas C, Despréaux D (eds) (2004) Improvement of cocoa tree resistance to Phytophthora diseases. Editions Quae Collection Repères, CIRAD, Montpellier

    Google Scholar 

  • Cilas C, Machado R, Motamayor JC (2010) Relations between several traits linked to sexual plant reproduction in Theobroma cacao L.: number of ovules per ovary, number of seeds per pod, and seed weight. Tree Genet Genomes 6(2):219–226

    Article  Google Scholar 

  • Clément D, Risterucci AM, Lanaud C (2001) Analysis of QTL studies related to yield and vigour traits carried out with different cocoa genotypes. In: Bekele F, End MJ, Eskes AB (eds) Proceedings of the international workshop on new technologies and cocoa breeding. Kota Kinabalu, Sabah, 16–17 October, vol 2000. INGENIC and Malaysian Cocoa Board, Kuala Lumpur, pp 132–139

    Google Scholar 

  • Clément D, Risterucci AM, Motamayor JC et al (2003a) Mapping quantitative trait loci for bean traits and ovule number in Theobroma cacao L. Genome 46(1):103–111

    Article  PubMed  Google Scholar 

  • Clément D, Risterucci AM, Motamayor JC et al (2003b) Mapping QTL for yield components, vigor, and resistance to Phytophthora palmivora in Theobroma cacao L. Genome 46(2):204–212

    Article  PubMed  Google Scholar 

  • Clément D, Lanaud C, Sabau X et al (2004) Creation of BAC genomic resources for cocoa (Theobroma cacao L.) for physical mapping of RGA containing BAC clones. Theor Appl Genet 108(8):1627–1634

    Article  CAS  PubMed  Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B 363(1491):557–572

    Article  CAS  Google Scholar 

  • Collard BC, Jahufer MZ, Brouwer JB, Pang EC (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142(1–2):169–196

    Article  CAS  Google Scholar 

  • Comeau A, Caetano VR, Langevin F, Haber S (2007) A systemic approach to germplasm development shows promise. In: Wheat production in stressed environments. Springer, Amsterdam, pp 153–160

    Chapter  Google Scholar 

  • Cope FW (1962) The mechanism of pollen incompatibility in Theobroma cacao. Heredity 17(2):157–182

    Article  Google Scholar 

  • Cornejo O, Kuhn D, Livingstone D et al (2013, January 13) Impact of selfing on the inference of demographic history from whole genomes in Theobroma cacao L. In: Plant and animal genome XXI conference. Plant and animal genome. https://pag.confex.com/pag/xxi/webprogram/Paper5809.html. Accessed 13 Sep 2015

  • Crouzillat D, Lerceteau E, Petiard V et al (1996) Theobroma cacao L.: a genetic linkage map and quantitative trait loci analysis. Theor Appl Genet 93(1–2):205–214

    Article  CAS  PubMed  Google Scholar 

  • Crouzillat D, Ménard B, Mora A et al (2000a) Quantitative trait loci analysis in Theobroma cacao L. using molecular markers. Euphytica 114:13–23

    Article  CAS  Google Scholar 

  • Crouzillat D, Phillips W, Fritz PJ et al (2000b) Quantitative trait loci analysis in Theobroma cacao using molecular markers. Inheritance of polygenic resistance to Phytophthora palmivora in two related cacao populations. Euphytica 114(1):25–36

    Article  CAS  Google Scholar 

  • Crouzillat D, Bellanger L, Rigoreau M et al (2003) Genetic structure, characterization and selection of Nacional cocoa compared to other genetic groups. In: Eskes AB, End MJ, Bekele F (eds) Proc of the Int Workshop on new technologies and cocoa breeding. Kota Kinabalu, 16–17 October 2000. INGENIC and Malaysia Cocoa Board, Kuala Lumpur, pp 47–64

    Google Scholar 

  • Cruickshank AM, Murray DB. (1966) Grenada selections. Annual report of the cocoa research unit, Trinidad for 1965, pp 23–25

    Google Scholar 

  • Cuatrecasas J (1964) Cacao and its allies. A taxonomic revision of the genus Theobroma. Contrib U S Nat Herb 35(6):379–605

    Google Scholar 

  • da Silva MR, Clément D, Gramacho KP et al (2016) Genome-wide association mapping of sexual incompatibility genes in cacao (Theobroma cacao L.). Tree Genet Genomes 12(3):62. https://link.springer.com/article/10.1007/s11295-016-1012-0

    Article  Google Scholar 

  • Daymond AJ, Tricker PJ, Hadley P (2011) Genotypic variation in photosynthesis in cacao is correlated with stomatal conductance and leaf nitrogen. Biol Plantar 55(1):99–104

    Article  CAS  Google Scholar 

  • de Albuquerque PS (2006) Mapas de ligação e identificação de locos controladores de características quantitativas (QTLs) associados à resistência a Crinipellis perniciosa em acessos de cacaueiro (Theobroma cacao) originários da Amazônia Brasileira. Doctoral dissertation, Escola Superior de Agricultura Luiz de Queiroz. http://www.teses.usp.br/teses/disponiveis/11/11135/tde-03072006-110040/. Accessed 1 May 2016

  • de Almeida CM, Vencovsky R, Damiao Cruz C, Bartley BG (1994) Path analysis of yield components of cacao hybrids (Theobroma cacao L.). Rev Bras Genet 17:181

    Google Scholar 

  • de Castro Virgens Filho A (2009) Challenges facing cocoa farming in the Americas. Paper presented at the 6th INGENIC workshop on current developments in cocoa genetics and breeding. Bali, 22–24 November 2009. http://www.incocoa.org/data/ingenic_workshop_6_Rep_2009.pdf. Accessed 19 July 2015

  • Dias LAS (2001) Genetic improvement of cacao. (Melhoramento genético do cacaueiro.) Viçosa Ltd, Funape. http://ecoport.org/ep?searchtype=earticleview&earticleid=197. Accessed 20 Dec 2015

  • Dias LA, Kageyama PY (1995) Combining-ability for cacao (Theobroma cacao L.) yield components under southern Bahia conditions. Theor Appl Genet 90(3–4):534–541

    Article  CAS  PubMed  Google Scholar 

  • Dias LAS, Marita J, Cruz CD et al (2003) Genetic distance and its association with heterosis in cacao. Braz Arch Biol Tech 46(3):339–348

    Article  Google Scholar 

  • Dias LAS, de Toledo Picoli EA, Rocha RB, Alfenas AC (2004) A priori choice of hybrid parents in plants. Genet Mol Res 3(3):356–368

    CAS  PubMed  Google Scholar 

  • Dinarti D, Susilo AW, Meinhardt LW et al (2015) Genetic diversity and parentage in farmer selections of cacao from southern Sulawesi, Indonesia revealed by microsatellite markers. Breed Sci 65(5):438–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • dos Santos IC, de Almeida AA, Anhert D et al (2014) Molecular, physiological and biochemical responses of Theobroma cacao L. genotypes to soil water deficit. PLoS One 9(12):e115746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • dos Santos EA, de Almeida AAF, Branco d S et al (2018) Path analysis of phenotypic traits in young cacao plants under drought conditions. PLoS One 13(2):e0191847. https://doi.org/10.1371/journal.pone.0191847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ducamp M (1994) Evaluation of cacao genetic resources for resistance to black pod and witches’ broom diseases in Trinidad. In: Annual report of the Cocoa Research Unit. Cocoa Research Unit, St. Augustine, pp 49–52

    Google Scholar 

  • Dzahini-Obiatey H, Adu Ampomah Y (2010) Cocoa swollen shoot virus: genus Badnavirus. In: End MJ, Daymond AJ, Hadley P (eds) Technical guidelines for the safe movement of cacao germplasm (Revised from FAO/IPGRI Technical Guidelines No. 20) Global Cacao Genetic Resources Network (CacaoNet). Bioversity International, Montpellier, pp 20–22

    Google Scholar 

  • Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotech J 8(1):2–9

    Article  CAS  Google Scholar 

  • Efombagn MI, Marelli JP, Ducamp M et al (2004) Effect of fruiting traits on the field resistance of cocoa (Theobroma cacao L.) clones to Phytophthora megakarya. J Phytopathol 152(10):557–562

    Article  Google Scholar 

  • Efombagn MI, Sounigo O, Nyassé S et al (2006) Genetic diversity in cocoa germplasm of southern Cameroon revealed by simple sequences repeat (SSRs) markers. Afr J Biotech 5(16):1441–1449

    CAS  Google Scholar 

  • Efombagn IB, Motamayor JC, Sounigo O et al (2008) Genetic diversity and structure of farm and Genebank accessions of cacao (Theobroma cacao L.) in Cameroon revealed by microsatellite markers. Tree Genet Genomes 4(4):821–831

    Article  Google Scholar 

  • Efombagn MI, Sounigo O, Nyassé S et al (2009) Phenotypic variation of cacao (Theobroma cacao L.) on farms and in the gene bank in Cameroon. J Plant Breed Crop Sci 1(6):258–264

    Google Scholar 

  • Efombagn MI, Bieysse D, Nyassé S, Eskes AB (2011) Selection for resistance to Phytophthora pod rot of cocoa (Theobroma cacao L.) in Cameroon: repeatability and reliability of screening tests and field observations. Crop Protect 30(2):105–110

    Article  Google Scholar 

  • Efron YF, Saul J, Blaha G (1999) Disease resistance studies and breeding in Papua New Guinea. In: Proceedings of the international workshop on the contribution of disease resistance to cocoa variety improvement. Salvador, 24–26 November 1996. INGENIC, London, pp 181–188

    Google Scholar 

  • Efron Y, Blaha G, Epaina P (2002a) Is the resistance to Phytophthora pod rot mainly polygenic and additive? INGENIC Newsl 7:2–4

    Google Scholar 

  • Efron Y, Marfu J, Faure M, Epaina P (2002b) Screening of segregating cocoa genotypes for resistance to vascular-streak dieback under natural conditions in Papua New Guinea. Aust Plant Path 31(4):315–319

    Article  Google Scholar 

  • Efron Y, Epaina P, Marfu J (2005a) Correlation between parental genotypes and the yields of their hybrids and the productivity of clones derived from these hybrids. In: Bekele F, End MJ, Eskes AB (eds) Proceedings of the international workshop on cocoa breeding for improved production systems. Accra, 19–23 October 2003. INGENIC and Ghana Cocoa Board, London, pp 19–21

    Google Scholar 

  • Efron Y, Epaina P, Marfu J (2005b) Breeding strategies to improve cocoa production in Papua New Guinea. In: Bekele F, End MJ, Eskes AB (eds) Proceedings of the international workshop on cocoa breeding for improved production systems. Accra, 19–23 October 2003. INGENIC and Ghana Cocoa Board, London, pp 79–91

    Google Scholar 

  • Efron Y, Epaina P, Tade E, Marfu J (2005c) The relationship between vigour, yield and yield efficiency of cocoa clones planted at different densities. In: Bekele F, End MJ, Eskes AB (eds) Proceedings of the international workshop on cocoa breeding for improved production systems. Accra, 19–23 October 2003. INGENIC and Ghana Cocoa Board, London, pp 92–102

    Google Scholar 

  • Efron Y, Epaina P, Marfu J (2006) Guidelines for accelerated clone development (ACD). In: Eskes AB, Efron Y (eds) Global approaches to cocoa germplasm utilization and conservation. Final Report of the CFC/ICCO/IPGRI Project on Cocoa Germplasm utilization and conservation: a global approach (1998–2004). Bioversity International, Rome, pp 87–89

    Google Scholar 

  • End MJ, Ford CS, Hadley P et al (2000) Role of the ICGD in the CFC/ICCO/IPGRI project. In: Working procedures for cocoa germplasm evaluation and selection. Proceedings of the CFC/ICCO/IPGRI Project Workshop, Montpellier, France, 1–6 February 1998, International Plant Genetic Resources Institute (IPGRI), pp 49–55

    Google Scholar 

  • Engels JM (1981) Genetic resource of cacao (Theobroma cacao): a catalogue of the CATIE collection. Technical Series. Technical Bull 7 CATIE, Costa Rica

    Google Scholar 

  • Enríquez GA (1993) Characteristics of cacao “Nacional” of Ecuador. In: Proceedings of the international workshop on conservation, characterization and utilization of cocoa genetic resources in the 21st century. Port-of-Spain, 13–17 September 1992. Cocoa Research Unit, St. Augustine, pp 269–278

    Google Scholar 

  • Enríquez GA, Soria J (1967) Cacao cultivars register. Instituto Interamericano de Ciencias Agrícolas, Centro d’Enseñanza e Investigación. CATIE, Turrialba

    Google Scholar 

  • Enríquez GA, Soria J (1981) Catálogo de clones de cacao. Technical Series No 6, ACRI and CATIE, Turrialba

    Google Scholar 

  • Enríquez GA, Soria J (1999) Genetic research on cocoa diseases at CATIE. In: Bekele F, End MJ, Eskes AB (eds) Proceedings of the international workshop on the contribution of disease resistance to cocoa variety improvement. Salvador, Bahia, 24–26 November 1996. INGENIC, London, pp 33–40

    Google Scholar 

  • Epaina P (2012) Identification of molecular markers and quantitative trait loci linked to resistance to vascular streak dieback and Phytophthora pod rot of cacao. Theobroma cacao L.) Dissertation, University of Sydney

    Google Scholar 

  • Eskes AB (2011) Collaborative and participatory approaches to cocoa variety improvement. Final report of the CFC/ICCO/Bioversity project on cocoa productivity and quality improvement: a participatory approach (2004–2010). CFC/ICCO/Bioversity International, Amsterdam/London/Rome

    Google Scholar 

  • Eskes B, Efron Y (eds) (2006) Global approaches to cocoa germplasm utilization and conservation. Final repor of CFC/ICCO/IPGRI project on cocoa germplasm utilization and conservation (1998–2004). CFC/ICCO/Bioversity International, Amsterdam/London/Rome

    Google Scholar 

  • Eskes AB, Lanaud C (2001) Cocoa. In: Charrier A, Jacquot M, Hamon S et al (eds) Tropical plant breeding. Repères CIRAD, Montpellier, pp 78–105

    Google Scholar 

  • Eskes AB, Sounigo O (2000) Use of cocoa populations for breeding purposes. In: Eskes AB, Engels JM, Lass RA, (eds) Working procedures for cocoa germplasm evaluation and selection. Proceedings of the CFC/ICCO/IPGRI project workshop, February 1998. IPGRI, Rome, pp 38–40

    Google Scholar 

  • Eskes A, Cilas C, Paulin D et al (1993) CIRAD-IRCC involvement in evaluation and utilization of cocoa germplasm. In: Proceedings of the international workshop on conservation, characterization and utilization of cocoa genetic resources in the 21st century. Port-of-Spain, 13–17 September 1992, pp 389–397

    Google Scholar 

  • Eskes AB, Paulin D, Clement D et al (1996) Selection methods applied and genetic knowledge generated in cocoa breeding in Côte d’Ivoire and Cameroon. In: End MJ, Eskes AB, Lee MT, Lockwood G (eds) Proceedings of the international workshop on cocoa breeding strategies. Kuala Lumpur, 18–19 October 1994. INGENIC and Malaysian Cocoa Board, London, pp 41–56

    Google Scholar 

  • Eskes AB, Engels JM, Lass RA (eds) (2000) Working procedures for cocoa germplasm evaluation and selection. In: Proceedings of the CFC/ICCO/IPGRI project workshop. Montpellier, 1–6 February 1998, International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Falconer DS (1989) Introduction to quantitative genetics, 3rd edn. Wiley, New York

    Google Scholar 

  • Faleiro FG, Queiroz VT, Lopes UV et al (2006) Mapping QTLs for witches’ broom (Crinipellis perniciosa) resistance in cacao (Theobroma cacao L.). Euphytica 149(1–2):227–235

    Article  CAS  Google Scholar 

  • Falque M, Lesdalons C, Eskes AB (1996) Comparison of two cacao (Theobroma cacao L.) clones for the effect of pollination intensity on fruit set and seed content. Sex Plant Reprod 9(4):221–227

    Article  Google Scholar 

  • Fang J-Y, Wetten A (2011) Importance of structural integrity of somatic embryos for long-term cryopreservation of cocoa (Theobroma cacao L.) germplasm. Afr J Agric Res 6:3954–3961

    Google Scholar 

  • Fang JY, Wetten A, Hadley P (2004) Cryopreservation of cocoa (Theobroma cacao L.) somatic embryos for long-term germplasm storage. Plant Sci 166:669–675

    Google Scholar 

  • Feltus FA, Saski CA, Mockaitis K et al (2011) Sequencing of a QTL-rich region of the Theobroma cacao genome using pooled BACs and the identification of trait specific candidate genes. BMC Genomics 12:379–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueira A, Janick J (1995) Somatic embryogenesis in cacao (Theobroma cacao L.). In: Newton R (ed) Somatic embryogenesis in woody plants. Klumer, Dordrecht, pp 291–310

    Chapter  Google Scholar 

  • Figueira A, Alemanno L, Litz RE (2005) Theobroma cacao. In: Litz RE (ed) Biotechnology of fruit and nut crops. CAB International Biosciences, Wallingford, pp 639–669

    Chapter  Google Scholar 

  • Finlay KW, Wilkinson GN (1963) The analysis of adaptation in a plant-breeding programme. Crop Past Sci 14(6):742–754

    Article  Google Scholar 

  • Fister AS, Shi Z, Zhang Y et al (2016) Protocol: transient expression system for functional genomics in the tropical tree Theobroma cacao L. Plant Methods 12:19–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flament MH, Kébé I, Clement D et al (2001) Genetic mapping of resistance factors to Phytophthora palmivora in cocoa. Genome 44(1):79–85

    Article  CAS  PubMed  Google Scholar 

  • Flood J, Murphy R (2004) Cocoa futures: a source book of some important issues facing the cocoa industry. Federación de Cafetaleros de Colombia, Chinchiná (Colombia). CABI/Department of Agriculture, London/Washington, DC

    Google Scholar 

  • Fouet O, Allegre M, Argout X et al (2011) Structural characterization and mapping of functional EST-SSR markers in Theobroma cacao. Tree Genet Genomes 7(4):799–817

    Article  Google Scholar 

  • Freeman WE (1969) Some aspects of the cocoa breeding programme. In: Proceedings of the agricultural society Trinidad and Tobago, December 1968, pp 507–527

    Google Scholar 

  • Freeman WE (1982) The breeding programme of the Ministry of Agriculture, Lands and Food Production, Trinidad and Tobago. Paper presented during the visit by the Cocoa Producer’s Alliance

    Google Scholar 

  • Freire L, Santana JO, de Sousa A et al (2017). TcPHYLL, a cacao phylloplanin expressed in young tissues and glandular trichomes. Physiol Mol Plant Path. https://doi.org/10.1016/j.pmpp.2017.06.002

  • Galyuon IK, McDavid CR, Lopez FB, Spence JA (1996a) The effect of irradiance level on cocoa (Theobroma cacao L.): I. Growth and leaf adaptations. Trop Agric 73(1):23–28

    Google Scholar 

  • Galyuon IK, McDavid CR, Lopez FB, Spence JA (1996b) The effect of irradiance level on cocoa (Theobroma cacao L.): II. Gas exchange and chlorophyll fluorescence. Trop Agric 73(1):29–33

    Google Scholar 

  • Glendinning DR (1963) The inheritance of bean size, pod size and number of beans per pod in cocoa (Theobroma cacao L.), with a note on bean shape. Euphytica 12(3):311–322

    Google Scholar 

  • Goenaga R, Guiltinan M, Maximova S et al (2015) Yield performance and bean quality traits of cacao propagated by grafting and somatic embryo-derived cuttings. HortSci 50(3):358–362

    Article  Google Scholar 

  • Gotsch N (1997) Cocoa biotechnology: status, constraints and future prospects. Biotech Adv 15(2):333–352

    Article  CAS  Google Scholar 

  • Griffing BR (1956) Concept of general and specific combining ability in relation to diallel crossing systems. Aust J Biol Sci 9(4):463–493

    Article  Google Scholar 

  • Guarino L, Lobell DB (2011) A walk on the wild side. Nat Clim Chang 1(8):374–375

    Article  Google Scholar 

  • Guest D (2007) Black pod: diverse pathogens with a global impact on cocoa yield. Phytopathology 97(12):1650–1653

    Article  PubMed  Google Scholar 

  • Guillou C, Fillodeau A, Brulard E et al (2014) Nestlé Cocoa plan: cocoa propagation by somatic embryogenesis. In: The third international conference of the IUFRO unit 2.09. 02: somatic embryogenesis and other vegetative propagation technologies, p 75

    Google Scholar 

  • Guiltinan MJ (2007) Cacao. In: Pua EC, Davey MR (eds) Biotechnology in agriculture and forestry # 60 transgenic crops. Springer, Heidelberg, pp 498–518

    Google Scholar 

  • Guiltinan MJ, Verica J, Zhang D, Figueira A (2008) Genomics of Theobroma cacao, ‘the food of the gods. In: Genomics of tropical crop plants. Springer, New York, pp 145–170

    Chapter  Google Scholar 

  • Gutiérrez OA, Campbell AS, Phillips-Mora W (2016) Breeding for disease resistance in cacao. In: Cacao diseases. Springer, Cham, pp 567–609

    Chapter  Google Scholar 

  • Gutiérrez-López N, Ovando-Medina I, Salvador-Figueroa M et al (2016) Unique haplotypes of cacao trees as revealed by trnH-psbA chloroplast DNA. Peer J 4:e1855. https://doi.org/10.7717/peerj.1855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins D, Chen Y (2016) Hardman Agribusiness (February, 2016). Destruction by chocolate. http://www.hardmanagribusiness.com/destruction-by-chocolate/. Accessed 24 Mar 2016

  • Hunter JR (1990) The status of cacao (Theobroma cacao, Sterculiaceae) in the western hemisphere. Econ Bot 44(4):425–439

    Article  Google Scholar 

  • ICCO (2017) World production and grindings of cocoa beans by region and country. http://www.icco.org/statistics/quarterly-bulletin-cocoa-statistics.html. Accessed 4 Sept 2017

  • Irish BM, Goenaga R, Zhang D et al (2010) Microsatellite fingerprinting of the USDA-ARS Tropical Agricultural Research Station cacao germplasm collection. Crop Sci 50(2):656–667

    Article  CAS  Google Scholar 

  • Iwaro AD, Sreenivasan TN, Umaharan P (1997a) Foliar resistance to Phytophthora palmivora as an indicator of pod resistance in Theobroma cacao. Plant Dis 81(6):619–624

    Article  CAS  PubMed  Google Scholar 

  • Iwaro AD, Umaharan P, Sreenivasan TN (1997b) Inheritance of foliar resistance to Phytophthora palmivora (Butler) Butler in cacao (Theobroma cacao L.). Euphytica 96(3):377–383

    Article  Google Scholar 

  • Iwaro AD, Sreenivasan TN, Umaharan P (1997c) Phytophthora resistance in cacao (Theobroma cacao): influence of pod morphological characteristics. Plant Pathol 46(4):557–565

    Article  Google Scholar 

  • Iwaro AD, Sreenivasan TN, Umaharan P (1998) Cacao resistance to Phytophthora: effect of pathogen species, inoculation depths and pod maturity. Eur J Plant Pathol 104(1):11–15

    Article  Google Scholar 

  • Iwaro AD, Sreenivasan TN, Spence JA (1999) Studies on black pod disease in Trinidad. In: Bekele F, End MJ, Eskes AB (eds) Proceedings of the international workshop on the contribution of disease resistance to cocoa variety improvement. Salvador, 24-26 November 1996. INGENIC, London, pp 67–74

    Google Scholar 

  • Iwaro AD, Sreenivasan TN, Butler DR, Umaharan P (2000) Rapid screening for Phytophthora pod rot resistance by means of detached pod inoculation. In: Eskes AB, Engels JMM, Lass RA (eds) Working procedures for cocoa germplasm evaluation and selection. Proceedings of the CFC/ICCO/IPGRI Project Workshop. Montpellier, February 1-6 1998, International Plant Genetic Resources Institute, Rome, pp 109–113

    Google Scholar 

  • Iwaro AD, Bekele FL, Butler DR (2003) Evaluation and utilisation of cacao (Theobroma cacao L.) germplasm at the international cocoa Genebank, Trinidad. Euphytica 130(2):207–221

    Article  CAS  Google Scholar 

  • Iwaro AD, Bharath SM, Bekele FL, Butler DR (2005) Germplasm enhancement for resistance to black pod disease: strategy and prospects. In: Proceedings of the 14th international cocoa research conference. Accra, 13–18 October, vol 2003. Cocoa Producers Alliance, Lagos, pp 75–84

    Google Scholar 

  • Iwaro AD, Bharath S, Bekele FL, Butler DR (2009) Assessment of genetic gain in a germplasm enhancement programme for resistance to black pod disease. In: Proceedings of the 15th international cocoa research conference. San José, 9–14 October 2006. COPAL, Lagos, pp 33–39

    Google Scholar 

  • Iwaro AD, Bekele FL, Butler DR et al (2010) Recent progress in breeding for specific traits in cocoa to meet challenges to production. In: Proceedings of the international congress on Tropical agricultural: overcoming challenges to developing sustainable agri-food systems in the tropics. Port of Spain, 30 November–5 December 2008. The University of the West Indies, St. Augustine, pp 43–52

    Google Scholar 

  • Jacob VJ, Toxopeus H (1971) The effect of pollinator parents on the pod value of hand pollinated pods of Theobroma cacao L. In: Proceedings of the 3rd international cacao conference, Accra, 1969. Cocoa Producers’ Alliance, Accra, pp 556–559

    Google Scholar 

  • Jha UC, Bohra A, Singh NP (2014) Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed 133(6):679–701

    Article  Google Scholar 

  • Ji K, Zhang D, Motilal LA et al (2013) Genetic diversity and parentage in farmer varieties of cacao (Theobroma cacao L.) from Honduras and Nicaragua as revealed by single nucleotide polymorphism (SNP) markers. Genet Resour Crop Evol 60(2):441–453

    Article  Google Scholar 

  • Johnson R (1993) Durability of disease resistance in crops: some closing remarks about the topic and the symposium. In: Durability of disease resistance. Springer, Dordrecht, pp 283–300

    Google Scholar 

  • Johnson ES, Bekele FL, Schnell RJ (2004) Field guide to the ICS clones of Trinidad. Tropical Agricultural Research and Higher Education Center, Serie Técnica Manual técnico No. 54. IICA/CATIE

    Google Scholar 

  • Johnson E, Phillips W, Bekele F et al (2007) Field guide to the UF clones of Costa Rica. In: Proceedings of the international cocoa producer’s conference. San Jose, 9–14 October 2006. Lagos, COPAL, Lagos, pp 641–646

    Google Scholar 

  • Johnson ES, Bekele FL, Brown SJ et al (2009) Population structure and genetic diversity of the Trinitario cacao from Trinidad and Tobago. Crop Sci 49(2):564–572

    Article  CAS  Google Scholar 

  • Juárez Gámez D (2012) Somatic embryogenesis and long term conservation of cocoa (Theobroma cacao L.) germplasm. Dissertation, Helsinki University

    Google Scholar 

  • Kébé IB, N’Goran JA, Tahi M et al (1999) Pathology and breeding research on resistance to black pod in Côte d’Ivoire. In: Bekele F, End MJ, Eskes AB (eds) Proceedings of the international workshop on the contribution of disease resistance to cocoa variety improvement. Salvador, 24–26 November 1996. INGENIC, London, pp 135–140

    Google Scholar 

  • Kennedy AJ, Mooleedhar V (1993) Conservation of cocoa in field genebanks. In: Proceedings of the international workshop on the conservation, characterisation and utilization of cocoa genetic resources in the 21st century. Port of Spain, 13–17 September 1992. The Cocoa Research Unit, St. Augustine, pp 21–23

    Google Scholar 

  • Kennedy AJ, Lockwood G, Mossu G et al (1987) Cocoa breeding: past, present and future. Cocoa Grow Bull 38:5–22

    Google Scholar 

  • Khan N, Motilal LA, Sukha DA et al (2008) Variability of butterfat content in cacao (Theobroma cacao L.): combination and correlation with other seed-derived traits at the International Cocoa Genebank, Trinidad. Plant Genet Resour-C 6(3):175–186

    Article  Google Scholar 

  • Knight R, Rogers H (1955) Incompatibility in Theobroma cacao. Heredity 9:69–77

    Article  Google Scholar 

  • Kuhn DN, Livingstone D III, Main D et al (2012) Identification and mapping of conserved ortholog set (COS) II sequences of cacao and their conversion to SNP markers for marker-assisted selection in Theobroma cacao and comparative genomics studies. Tree Genet Genomes 8(1):97–111

    Article  Google Scholar 

  • Lachenaud P (1991) Effet de quelques variables saisonnières sur la relation entre poids de cabosse et poids de fèves fraîches chez le cacaoyer: bilan d’observations en Côte d’Ivoire. Café, Cacao, Thé 35(2):113–120

    Google Scholar 

  • Lachenaud P, Oliver G (2005) Variability and selection for morphological bean traits in wild cocoa trees (Theobroma cacao L.) from French Guiana. Genet Resour Crop Evol 52(3):225–231

    Article  Google Scholar 

  • Lachenaud P, Zhang D (2008) Genetic diversity and population structure in wild stands of cacao trees (Theobroma cacao L.) in French Guiana. Ann Forest Sci 65(3). https://doi.org/10.1051/forest:2008011

  • Lachenaud P, Paulin D, Ducamp M, Thévenin JM (2007) Twenty years of agronomic evaluation of wild cocoa trees (Theobroma cacao L.) from French Guiana. Sci Hortic Amsterdam 113(4):313–321

    Article  Google Scholar 

  • Läderach P, Martinez-Valle A, Schroth G, Castro N (2013) Predicting the future climatic suitability for cocoa farming of the world’s leading producer countries, Ghana and Côte d’Ivoire. Clim Chang 119:841–854. https://doi.org/10.1007/s10584-013-0774-8

    Article  Google Scholar 

  • Lamin R, Sa’edi Mohd (1996) Cocoa breeding strategies of the Malaysian Cocoa Board. In: End MJ, Eskes AB, Lee MT, Lockwood G (eds) Proceedings of the international workshop on cocoa breeding strategies. Kuala Lumpur, 18–19 October 1994. INGENIC and Malaysian Cocoa Board, Kuala Lumpur, pp 59–65

    Google Scholar 

  • Lamin K, Chong TC, Bong CL et al (1999) Breeding for resistance to cocoa diseases in Malaysia with special reference to vascular streak dieback. In: Bekele F, End MJ, Eskes AB (eds) Proceedings of INGENIC workshop on the contribution of disease resistance to cocoa variety improvement. Salvador, 25–26 November 1996. INGENIC, London, pp 25–26

    Google Scholar 

  • Lanaud C (1987) Doubled haploids of cocoa (Theobroma cacao L.) 1. Observations of fertility. Plant Breed 99(3):187–195

    Article  Google Scholar 

  • Lanaud C, Risterucci AM, N’Goran AK et al (1995) A genetic linkage map of Theobroma cacao L. Theor Appl Genet 91(6–7):987–993

    Google Scholar 

  • Lanaud C, Kébé I, Risterucci AM et al (1999) Mapping quantitative trait loci (QTL) for resistance to Phytophthora palmivora in T. cacao L. In: Proceedings of the 12th international cocoa research conference, Salvador, 17–23 November 1996. COPAL, Lagos, pp 99–105

    Google Scholar 

  • Maharaj C, Boult E, Clapperton J et al (2003a) Identification of QTLs related to fat content, seed size and sensorial traits in Theobroma cacao L. In: Proceedings of the 14th international cocoa conference, Accra, October 2003. COPAL, Lagos, pp 13–18

    Google Scholar 

  • Lanaud C, Motamayor J-C, Sounigo O (2003b) Cacao. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Genetic diversity of cultivated tropical crops. Science Publishers Inc./CIRAD, Enfield/Montpellier, pp 125–156

    Google Scholar 

  • Lanaud C, Clément D, Flament MH et al (2004a) Genetic mapping of quantitative trait loci for black pod resistance in cocoa. Improvement of cocoa tree resistance to Phytophthora diseases. Collection Repères. CIRAD, Montpellier, pp 147–164

    Google Scholar 

  • Lanaud C, Risterucci AM, Pieretti I et al (2004b) Characterisation and genetic mapping of resistance and defence gene analogs in cocoa (Theobroma cacao L.). Mol Breed 13(3):211–227

    Article  CAS  Google Scholar 

  • Lanaud C, Fouet O, Clément D et al (2009) A meta-QTL analysis of disease resistance traits of Theobroma cacao L. Mol Breed 24(4):361–374

    Article  Google Scholar 

  • Lanaud C, Fouet O, Legavre T et al (2017) Deciphering the Theobroma cacao self-incompatibility system: from genomics to diagnostic markers for self-compatibility. J Exp Bot 68(17):4775–4790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurent V, Risterucci AM, Lanaud C (1994) Genetic diversity in cocoa revealed by cDNA probes. Theor Appl Genet 88(2):193–198

    Article  CAS  PubMed  Google Scholar 

  • Leal GA, Albuquerque PS, Figueira A (2007) Genes differentially expressed in Theobroma cacao associated with resistance to witches’ broom disease caused by Crinipellis perniciosa. Mol Plant Pathol 8(3):279–292

    Article  CAS  PubMed  Google Scholar 

  • Legavre T, Ducamp M, Sabau X et al (2015) Identification of Theobroma cacao genes differentially expressed during Phytophthora megakarya infection. Physiol Mol Plant P 92:1–3

    Article  CAS  Google Scholar 

  • Legg JT, Lockwood G (1977) Evaluation and use of a screening method to aid selection of cocoa (Theobroma cacao) with field resistance to cocoa swollen-shoot virus in Ghana. Ann Appl Biol 86(2):241–248

    Article  Google Scholar 

  • Lerceteau E, Robert T, Pétiard V, Crouzillat D (1997) Evaluation of the extent of genetic variability among Theobroma cacao accessions using RAPD and RFLP markers. Theor Appl Genet 95(1–2):10–19

    Article  CAS  Google Scholar 

  • Li H, Bradbury P, Ersoz E et al (2011) Joint QTL linkage mapping for multiple-cross mating design sharing one common parent. PLoS One 6(3):e17573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lima LS, Gramacho KP, Carels N et al (2009) Single nucleotide polymorphisms from Theobroma cacao expressed sequence tags associated with witches’ broom disease in cacao. Genet Mol Res 8(3):799–808

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Zhang J, Liu X et al (2016) Fine mapping and RNA-Seq unravels candidate genes for a major QTL controlling multiple fiber quality traits at the T 1 region in upland cotton. BMC Genomics 17(1):295–308. https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-016-2605-6?site=bmcgenomics.biomedcentral.com

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livingstone DS III, Motamayor JC, Schnell RJ et al (2011) Development of single nucleotide polymorphism markers in Theobroma cacao and comparison to simple sequence repeat markers for genotyping of Cameroon clones. Mol Breed 27(1):93–106

    Article  Google Scholar 

  • Livingstone DS III, Freeman B, Motamayor JC et al (2012) Optimization of a SNP assay for genotyping Theobroma cacao under field conditions. Mol Breed 30(1):33–52

    Article  CAS  Google Scholar 

  • Lockwood GE (1980) Determination of pod and bean characters in progeny trials with cocoa. Trop Agric (Trin) 57(4):289–300

    Google Scholar 

  • Lockwood G (2003) Who needs clothing? INGENIC Newsl 8:2–5

    Google Scholar 

  • Lockwood G, End MJ (1993) History, technique and future needs for cocoa collecting. In: Proceedings of the international workshop on the conservation, characterisation and utilization of cocoa genetic resources in the 21st century. Port of Spain, 13–17 September 1992, Cocoa Research Unit, St. Augustine, pp 1–14

    Google Scholar 

  • Lockwood G, Gyamfi MM (1979) The CRIG cocoa germplasm collection with notes on codes used in the breeding programme at Tafo and elsewhere. Technical Bullettin 10. Cocoa Research Institute, Ghana

    Google Scholar 

  • Lockwood G, Pang JPT (1993) Utilization of cocoa germplasm in breeding for yield. In: Proceedings of the international workshop on the conservation, characterisation and utilization of cocoa genetic resources in the 21st century. Port of Spain, 13–17 September 1992. Cocoa Research Unit, St. Augustine, pp 198–214

    Google Scholar 

  • Lockwood G, Pang JT (1994) Additive inheritance of yield in cocoa. In: Proceedings of the 11th international cocoa research conference, Yamoussoukro, 18–24 Jul 1993. COPAL, Lagos, pp 18–24

    Google Scholar 

  • Lockwood G, Pang JTY (1996) Cocoa breeding at BAL Plantations. Genetic analysis and its implications for breeding strategy. In: Proceedings of the INGENIC international workshop on cocoa breeding strategies. Kuala Lumpur, 18–19 October 1994. MCB and INGENIC, London, pp 66–80

    Google Scholar 

  • Lockwood G, Yin JPT (1996) Yields of cocoa clones in response to planting density in Malaysia. Exp Agric 32(01):41–47

    Article  Google Scholar 

  • Lockwood G, Owusu-Ansah F, Adu-Ampomah Y (2007) Heritability of single plant yield and incidence of black pod disease in cocoa. Exp Agric 43(04):455–462

    Article  Google Scholar 

  • Loor RG, Risterucci AM, Courtois B et al (2009) Tracing the native ancestors of the modern Theobroma cacao L. population in Ecuador. Tree Genet Genomes 5(3):421–433

    Article  Google Scholar 

  • Loor-Solorzano RG, Fouet O, Lemainque A et al (2013) Correction: insight into the wild origin, migration and domestication history of the Fine Flavor Nacional Theobroma cacao L. variety from Ecuador. PLoS One 8(2). https://doi.org/10.1371/annotation/2357f0f1-7dc3-4781-afb0-29a8ce56b3f0

  • Lopes UV, Monteiro WR, Pires JL et al (2011) Cacao breeding in Bahia, Brazil: strategies and results. Crop Breed Appl Biot 11:73–81

    Article  Google Scholar 

  • Luz EDMN, Yamada MM, Silva SDVM et al (1999) Research on cacao resistance to black pod disease in Bahia, Brazil – 1980–1995. In: Bekele F, End MJ, Eskes AB (eds) Proceedings of the international workshop on the contribution of disease resistance to cocoa variety improvement. Salvador, 24–26 November 1996. INGENIC, London, pp 57–66

    Google Scholar 

  • Maharaj K, Indalsingh T, Cumberbatch A et al (2005) High density planting of cacao: the Trinidad and Tobago experience. In: Bekele F, End MJ Eskes AB (eds) Proc of the Int Workshop on cocoa breeding for improved production systems. Accra, 19–21 October 2003. INGENIC and Ghana Cocoa Board, Accra, pp 171–182

    Google Scholar 

  • Maharaj K, Maharaj P, Bekele FL et al (2011) Trinidad selected hybrids: an investigation of the phenotypic and agro-economic traits of 20 selected cacao cultivars. Trop Agric 88(4):175–185

    Google Scholar 

  • Marcano M, Pugh T, Cros E et al (2007) Adding value to cocoa (Theobroma cacao L.) germplasm information with domestication history and admixture mapping. Theor Appl Genet 114(5):877–884

    Article  PubMed  Google Scholar 

  • Marcano M, Morales S, Hoyer MT et al (2009) A genomewide admixture mapping study for yield factors and morphological traits in a cultivated cocoa (Theobroma cacao L.) population. Tree Genet Genom 5(2):329–337

    Article  Google Scholar 

  • Mares JH, Gramacho KP, Santos EC et al (2017) Proteomic analysis during of spore germination of Moniliophthora perniciosa, the causal agent of witches’ broom disease in cacao. BMC Microbiol 17:176. https://doi.org/10.1186/s12866-017-1085-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marfu J, Efron Y, Epaina P (2009) Selection of new cocoa varieties through multi-location on-farm testing in Papua New Guinea. In: Eskes AB, Efron Y, End MJ, Bekele F (eds) Proceedings of the international workshop on cocoa breeding for farmers’ needs. San José, 15–17 October 2006. INGENIC/CATIE, London/Turrialba, pp 115–122

    Google Scholar 

  • Marita JM, Nienhuis J, Pires JL, Aitken WM (2001) Analysis of genetic diversity in with emphasis on witches’ broom disease resistance. Crop Sci 41(4):1305–1316

    Article  Google Scholar 

  • marketsandmarkets.com (2011) Rep, CG 1111, The global chocolate, cocoa beans, lecithin, sugar and vanilla market by market share, trade, prices, geography trend and forecast (2011–2016). http://www.marketsandmarkets.com/Market-Reps/global-chocolate-market-164.html. Accessed 14 June 2016

  • Martínez IB, Nelson MR, Flamand MC et al (2015) Genetic diversity and population structure of anciently introduced Cuban cacao Theobroma cacao plants. Genet Res Crop Ev 62(1):67–84

    Article  Google Scholar 

  • Mata Quirós A (2013) Evaluación de dos protocolos para la inducción de embiogénesis somática en clones de cacao (Theobroma cacao L.) seleccionados por el programa de mejoramiento genético de cacao del CATIE. Thesis M.Sc., CATIE, Costa Rica

    Google Scholar 

  • Maximova SN, Young PS et al (2005) Integrated system for propagation of Theobroma cacao L. In: Protocol for somatic embryogenesis in woody plants. Springer, Dordrecht, pp 209–227

    Chapter  Google Scholar 

  • Maximova SN, Young A, Pishak S, Guiltinan MJ (2008) Field performance of Theobroma cacao L. plants propagated via somatic embryogenesis. In Vitro Cell Dev-PL 44(6):487–493

    Article  Google Scholar 

  • Mayr E (1954) Change of genetic environment and evolution. In: Huxley J, Hardy AC, Ford EB (eds) Evolution as a process. Allen & Unwin, London, pp 157–180

    Google Scholar 

  • Mba C, Guimaraes EP, Ghosh K (2012) Re-orienting crop improvement for the changing climatic conditions of the 21st century. Agr Food Secur 1(1):1–17. http://www.agricultureandfoodsecurity.com/content/1/1/7

    Article  Google Scholar 

  • McCouch S, Baute GJ, Bradeen J et al (2013) Agriculture: feeding the future. Nature 499(7456):23–24

    Article  CAS  PubMed  Google Scholar 

  • McMahon P, Bin Purung H, Lambert S et al (2015) Testing local cocoa selections in three provinces in Sulawesi: (i) productivity and resistance to cocoa pod borer and Phytophthora pod rot (black pod). Crop Prot 70:28–39

    Article  CAS  Google Scholar 

  • Monteiro WR, Lopes UV, Clement D (2009) Genetic improvement in cocoa. In: Breeding plantation tree crops: tropical species. Springer, New York, pp 589–626

    Chapter  Google Scholar 

  • Montserin BG, de Verteuil LL, Freeman WE (1957) A note on cacao hybridization in Trinidad with reference to clonal selection and hybrid seed. Caribbean Comm Publ Exch Ser 33:160–164

    Google Scholar 

  • Mooleedhar V, Lauckner FB (1990) Effect of spacing on yield in improved clones of Theobroma cacao L. Trop Agric 67(4):376–378

    Google Scholar 

  • Morera J (1996) Conservation of cacao in field genebanks (CATIE). In: Proceedings of the international workshop on the utilisation of the genetic resources of the International Cocoa Genebank, Trinidad (ICGT). Port-of-Spain, 23–28 June 1996. Cocoa Research Unit, St. Augustine, pp 15–20

    Google Scholar 

  • Morera J, Mora A (1991) Comparación de 56 cruces interclonales de cacao en Pococí, Costa Rica. Turrialba 41(4):578–582

    Google Scholar 

  • Morillo F, Sánchez P, Girón C, Valera Á (2008) Comportamiento de híbridos de cacao (Theobroma cacao) al ataque de Steirastoma breve (Coleoptera: Cerambycidae). Rev Colomb Entomol 34(2):151–155

    Google Scholar 

  • Motamayor JC, Risterucci AM, Lopez PA et al (2002) Cacao domestication I: the origin of the cacao cultivated by the Mayas. Heredity 89(5):380–386

    Article  CAS  PubMed  Google Scholar 

  • Motamayor JC, Risterucci AM, Heath M, Lanaud C (2003) Cacao domestication II: progenitor germplasm of the Trinitario cacao cultivar. Heredity 91(3):322–330

    Article  CAS  PubMed  Google Scholar 

  • Motamayor JC, Lachenaud P, Mota JW et al (2008) Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS One 3(10):e331. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.00033111

    Article  CAS  Google Scholar 

  • Motamayor JC, Mockaitis K, Schmutz J et al (2013) The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color. Genome Biol 14(6):r53. https://genomebiology.biomedcentral.com/articles/10.1186/gb-2013-14-6-r53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motilal LA, Sounigo O, Thévenin JM et al (2003) Theobroma cacao L.: genome map and QTLs for Phytophthora palmivora resistance. In: Proceedings of the 13th international cocoa research conferences, Kota Kinabalu, 9–14 October 2000. COPAL, Lagos, pp 111–118

    Google Scholar 

  • Motilal LA, Zhang D, Umaharan P et al (2010) The relic Criollo cacao in Belize-genetic diversity and relationship with Trinitario and other cacao clones held in the International Cocoa Genebank, Trinidad. Plant Gen Resour 8(02):106–115

    Article  CAS  Google Scholar 

  • Motilal LA, Zhang D, Umaharan P et al (2011) Microsatellite fingerprinting in the international cocoa Genebank, Trinidad: accession and plot homogeneity information for germplasm management. Plant Genet Resour-C 9(03):430–438

    Article  CAS  Google Scholar 

  • Motilal LA, Zhang D, Umaharan P et al (2012) Elucidation of genetic identity and population structure of cacao germplasm within an international cacao genebank. Plant Genet Resour-C 10(03):232–241

    Article  Google Scholar 

  • Motilal LA, Zhang D, Mischke S et al (2016) Association mapping of seed and disease resistance traits in Theobroma cacao L. Planta 244(6):1265–1276

    Article  CAS  PubMed  Google Scholar 

  • N’Goran JAK, Lachenaud P, Kébé IB et al (2006) Population breeding approaches applied in cocoa selection in Côte d’Ivoire. In: Eskes AB, Efron Y (eds) Global approaches to cocoa germplasm utilization and conservation. Final Report of the CFC/ICCO/IPGRI project on cocoa germplasm utilization and conservation: a global approach (1998–2004). CFC, Amsterdam, pp 35–40

    Google Scholar 

  • Ndoumbé M, Bieysse D, Cilas C (2001) Multi-trait selection in a diallel crossing scheme of cocoa. Plant Breed 120(4):365–367

    Article  Google Scholar 

  • Neilson J, Susilo A, Mulia S et al (2014) Improving cocoa production through farmer involvement in demonstration trials of potentially superior and pest/disease resistant genotypes and integrated management practices. http://aciar.gov.au/files/smar-2005-074_final_Rep.pdf. Accessed 29 June 2016

  • N’Goran JA, Laurent V, Risterucci AM, Lanaud C (1994) Comparative genetic diversity studies of Theobroma cacao L. using RFLP and RAPD markers. Heredity 73(6):589–597

    Article  Google Scholar 

  • N’Goran JAK, Risterucci AM, Clement D et al (1996) Identification of Quantitative Trait Loci (QTL) for morphological and resistance traits in Theobroma cacao L. In: End MJ, Eskes AB, Lee MT, Lockwood G (eds) Proceedings of the international workshop on cocoa breeding strategies. Kuala Lumpur, 18–19 October 1994. MCB and INGENIC, London, pp 123–127

    Google Scholar 

  • N’Goran JAK, Laurent V, Risterucci AM, Lanaud C (2000) The genetic structure of cocoa populations (Theobroma cacao L.) revealed by RFLP analysis. Euphytica 115(2):83–90

    Article  Google Scholar 

  • Niemenak N, Saare-Surminski K, Rohsius C et al (2008) Regeneration of somatic embryos in Theobroma cacao L. in temporary immersion bioreactor and analyses of free amino acids in different tissues. Plant Cell Rep 27:667–676

    Article  CAS  PubMed  Google Scholar 

  • Nyadanu D, Akromah R, Adomako B et al (2012) Inheritance and general combining ability studies of detached pod, leaf disc and natural field resistance to Phytophthora palmivora and Phytophthora megakarya in cacao (Theobroma cacao L.). Euphytica 188(2):253–264

    Article  Google Scholar 

  • Nyassé S, Cilas C, Herail C, Blaha G (1995) Leaf inoculation as an early screening test for cocoa (Theobroma cacao L.) resistance to Phytophthora black pod disease. Crop Prot 14(8):657–663

    Article  Google Scholar 

  • Nyassé S, Despréaux D, Cilas C (2002) Validity of a leaf inoculation test to assess the resistance to Phytophthora megakarya in a cocoa (Theobroma cacao L.) diallel mating design. Euphytica 123(3):395–399

    Article  Google Scholar 

  • Nyassé S, Efombagn Mousseni IB, Bouambi E et al (2003) Early selection for resistance to Phytophthora megakarya in local and introduced cocoa varieties in Cameroon. Trop Sci 43(2):96–102

    Article  Google Scholar 

  • Oberthür T, Samson M, Janetski N et al (2018) Cocoa yield under good agricultural practices and 4R nutrient management in Indonesian smallholder systems. Better Crop 102(1):3–7. https://doi.org/10.24047/BC10213

    Article  Google Scholar 

  • Ofori A, Padi FK, Acheampong K, Lowor S (2015) Genetic variation and relationship of traits related to drought tolerance in cocoa (Theobroma cacao L.) under shade and no-shade conditions in Ghana. Euphytica 201(3):411–421

    Article  CAS  Google Scholar 

  • Olasupo FO, Adewale DB, Aikpokpodion PO et al (2018) Genetic identity and diversity of Nigerian cacao genebank collections verified by single nucleotide polymorphisms (SNPs): a guide to field genebank management and utilization. Tree Genet Genomes 14(2):32. https://doi.org/10.1007/s11295-018-1244-2

    Article  Google Scholar 

  • Onomo PE, Niemenak N, Djocgoue PF et al (2015) Heritability of polyphenols, anthocyanins and antioxidant capacity of Cameroonian cocoa (Theobroma cacao L.) beans. Afr J Biotech 14(36):2672–2682

    Article  CAS  Google Scholar 

  • Opoku IY, Appiah AA, Akrofi AY, Owusu GK (2000) Phytophthora megakarya: a potential threat to the cocoa industry in Ghana. Ghana J Agric Sci 33(2):237–248

    Article  Google Scholar 

  • Opoku SY, Bhattacharjee R, Kolesnikova-Allen M et al (2007) Genetic diversity in cocoa (Theobroma cacao L.) germplasm collection from Ghana. J Crop Improv 20(1–2):73–87

    Article  CAS  Google Scholar 

  • Oro FZ, Bonnot F, Ngo-Bieng MA et al (2012) Spatiotemporal pattern analysis of cacao swollen shoot virus in experimental plots in Togo. Plant Pathol 61(6):1043–1051

    Article  Google Scholar 

  • Oyekale AS, Bolaji MB, Olowa OW (2009) The effects of climate change on cocoa production and vulnerability assessment in Nigeria. Agric J 4(2):77–85

    Google Scholar 

  • Padi FK, Opoku SY, Adomako B, Adu-Ampomah Y (2012) Effectiveness of juvenile tree growth rate as an index for selecting high yielding cocoa families. Sci Hortic 139:14–20

    Article  Google Scholar 

  • Padi FK, Adu-Gyamfi P, Akpertey A et al (2013a) Differential response of cocoa (Theobroma cacao) families to field establishment stress. Plant Breed 132(2):229–236

    Article  Google Scholar 

  • Padi FK, Takrama J, Opoku SY et al (2013b) Early-stage performance of cocoa clones relative to their progenitor ortets: implications for large-scale clone selection. J Crop Improv 27(3):319–341

    Article  Google Scholar 

  • Padi FK, Domfeh O, Takrama J, Opoku S (2013c) An evaluation of gains in breeding for resistance to the cocoa swollen shoot virus disease in Ghana. Crop Prot 51:24–31

    Article  Google Scholar 

  • Padi FK, Ofori A, Takrama J et al (2015) The impact of SNP fingerprinting and parentage analysis on the effectiveness of variety recommendations in cacao. Tree Genet Genomes 11(3):1–4

    Article  Google Scholar 

  • Pang JT (2006) Yield efficiency in progeny trials with cocoa. Exp Agric 42(03):289–299

    Article  Google Scholar 

  • Pang JT, Lockwood G (2008) A re-interpretation of hybrid vigour in cocoa. Exp Agric 44(03):329–338

    Article  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD (1988) Resolution of quantitative traits into Mendelian factors using a complete linkage map of restriction fragment length polymorphisms. Nature 335(6192):721–726

    Article  CAS  PubMed  Google Scholar 

  • Paulin D, Mossu G, Lachenaud P, Eskes AB (1994) Genetic analysis of a factorial crossing scheme with cacao hybrids tested in four locations in Ivory Coast. In: Proceedings of the interanational cocoa conference: challenges in the 90s. Society of Incorporated Planters, Sabah, pp 73–83

    Google Scholar 

  • Pence VC (1995) Somatic embryogenesis in cacao (Theobroma cacao). In: Somatic embryogenesis and synthetic seed I. Springer, Berlin/Heidelberg, pp 455–467

    Chapter  Google Scholar 

  • Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Mol Breed 7(4):275–291

    Article  CAS  Google Scholar 

  • Phillips-Mora W (1999) Studies on resistance to black pod disease (Phytophthora palmivora Butler) at CATIE. In: Proceedings of the international workshop on the contribution of disease resistance to cocoa variety improvement. INGENIC, London, pp 41–50

    Google Scholar 

  • Phillips-Mora W, Enríquez GA (1988) Catálogo de cultivares de cacao. Programa de mejoramiento de cultivos Tropicales. Oficina Nacional de Semillas. Serie Técnica, Boletín Técnico. CATIE, Turrialba, pp 18–60

    Google Scholar 

  • Phillips-Mora W, Galindo JJ (1988) Evaluación de la resistencia de cultivares de cacao (Theobroma cacao L.) a Moniliophthora roreri Cif. Par. In: Proceedings of the 10th cocoa research conference. San Domingo, 17–23 May 1987. COPAL, Lagos, pp 685–689

    Google Scholar 

  • Phillips-Mora W, Galindo JJ (1989) Method of inoculation and evaluation of resistance to Phytophthora palmivora in cocoa fruit (Theobroma cacao). Turrialba 39(4):488–496

    Google Scholar 

  • Phillips-Mora W, Castillo J, Krauss U et al (2005) Evaluation of cacao (Theobroma cacao) clones against seven Colombian isolates of Moniliophthora roreri from four pathogen genetic groups. Plant Pathol 54(4):483–490

    Article  CAS  Google Scholar 

  • Phillips-Mora W, Astorga C, Mata A et al (2011) Germplasm evaluation and breeding for Moniliasis and black pod resistance at CATIE in Costa Rica. Collaborative and participatory approaches to cocoa variety improvement. IPGRI, Rome, pp 38–41

    Google Scholar 

  • Phillips-Mora W, Castillo J, Arciniegas A et al (2012) Overcoming the main limiting factors of cacao production in Central America through the use of improved clones developed at CATIE. In: Proceedings of the 16th international cocoa research conference, Bali, 16–19 November 2009. COPAL, Lagos, pp 93–99

    Google Scholar 

  • Phillips-Mora W, Arciniegas-Leal A, Mata-Quiros A et al (2013) Catalogue of cacao clones selected by CATIE for commercial plantings. Technical series, Technical manual 105

    Google Scholar 

  • Pilgrim S, Yen IC, Sukha D, Bekele F (2015) Exploring the nutraceutical value of fine or flavor Trinitario cacao varieties: antioxidant capacity and polyphenol content of 24 Imperial College Selections from Trinidad. In: Castell M, Saldaña-Ruíz S, Rodríguez-Lagunas MJ et al (eds) Second international congress on chocolate and cocoa in medicine, Barcelona, 25–26th September 2015. Nutrients 7(12). https://doi.org/10.3390/nu7125502

  • Pinto LR, Lopes UV, Monteiro WR, Pereira MG (1993) Adaptabilidade e estabilidade de cultivares de cacaueiro. Agrotrópica 5:53–63

    Google Scholar 

  • Pires JL (2003) Avaliação quantitativa e molecular de germoplasma para o melhoramento do cacaueiro com ênfase na produtividade, qualidade de frutos e resistência a doenças. Dissertation, Universidade Federal de Viçosa

    Google Scholar 

  • Pires JL, Cascardo JC, Lambert SV, Figueira A (1998) Increasing cocoa butter yield through genetic improvement of Theobroma cacao L.: seed fat content variability, inheritance, and association with seed yield. Euphytica 103(1):115–121

    Article  Google Scholar 

  • Pires JL, Monteiro WR, Luz ED et al (1999) Cocoa breeding for witches’ broom resistance at CEPEC, Bahia, Brazil. In: Proceedings of the international workshop on the contribution of disease resistance to cocoa variety improvement. Salvador, 24–26 November 1996. INGENIC, London, pp 91–101

    Google Scholar 

  • Pires JL, Marita JM, Lopes UV et al (2003) Diversity for phenotypic traits and molecular markers in CEPEC’s germplasm collection in Bahia, Brazil. In: Bekele F, End MJ, Eskes AB (eds) Proceedings of the international workshop on new technologies and cocoa breeding. Kota Kinabalu, 16–17, October 2000. INGENIC and Malaysian Cocoa Board, Kuala Lumpur, pp 75–92

    Google Scholar 

  • Ploetz RC (2007) Cacao diseases: important threats to chocolate production worldwide. Phytopathology 97(12):1634–1639

    Article  PubMed  Google Scholar 

  • Ploetz R (2016) The impact of diseases on cacao production: A global overview. In: Cacao diseases. Springer, New York, pp 33–59

    Chapter  Google Scholar 

  • Pokou ND, N’Goran JA, Kébé I et al (2008) Levels of resistance to Phytophthora pod rot in cocoa accessions selected on-farm in Côte d’Ivoire. Crop Prot 27(3):302–309

    Article  Google Scholar 

  • Pokou ND, N’Goran JA, Lachenaud PH et al (2009) Recurrent selection of cocoa populations in Cote d’Ivoire: comparative genetic diversity between the first and second cycles. Plant Breed 128(5):514–520

    Article  Google Scholar 

  • Pokou ND, Motamayor JC, Schnell R, Eskes AB (2014) Genetic diversity of outstanding cacao accessions (Theobroma cacao L.) from farmers’ field in Côte-d’Ivoire using SSR markers. Int J Plant Anim Sci 3(1):105–111. ISSN: 2167-0437

    Google Scholar 

  • Posnette AF (1943) Cacao selection on the Gold Coast. Trop Agric (Trin) 20(8):149–155

    Google Scholar 

  • Posnette AF (1948) New introductions. Quarterly Report of the West African Cocoa Research Institute for October–December

    Google Scholar 

  • Posnette AF (1950) The pollination of cacao in the Gold Coast. J Hortic Sci 25(3):155–163

    Article  Google Scholar 

  • Pound FJ (1932) The genetic constitution of cocoa crops 1. In: Annual rep of cocoa research 1931–1945. The Imperial College of Tropical Agriculture, Trinidad; 1932, pp 9–26

    Google Scholar 

  • Pound FJ (1935) The completion of selection. In: Fifth annual report on cacao research. The Imperial College of Tropical Agriculture, Trinidad, pp 7–16

    Google Scholar 

  • Pound FJ (1938) Cacao and witches’ broom disease (Marasmius perniciosa) of South America with notes on other species of Theobroma. Yuille’s Printery, Port-of-Spain

    Google Scholar 

  • Pound FJ (1945) A note on the cocoa population of South America. In: Report and proceedings of the 1945 cocoa research conference, May–June 1945. The Colonial Office London, His Majesty’s Stationery Office, vol 192, pp 131–133. Reprinted in Archives of Cocoa Research 1:93–97 (1982)

    Google Scholar 

  • Pugh T, Fouet O, Risterucci AM et al (2004) A new cacao linkage map based on codominant markers: development and integration of 201 new microsatellite markers. Theor Appl Genet 108(6):1151–1161

    Article  CAS  PubMed  Google Scholar 

  • Quainoo AK, Wetten AC, Allainguillaume J (2008) The effectiveness of somatic embryogenesis in eliminating the cocoa swollen shoot virus from infected cocoa trees. J Virol Methods 149(1):91–96

    Article  CAS  PubMed  Google Scholar 

  • Queiroz VT, Guimarães CT, Anhert D et al (2003) Identification of a major QTL in cocoa (Theobroma cacao L.) associated with resistance to witches’ broom disease. Plant Breed 122(3):268–272

    Article  CAS  Google Scholar 

  • Ramírez AMH, de la Hoz VT, Osorio TMO et al (2018) Evaluation of the potential of regeneration of different Colombian and commercial genotypes of cocoa (Theobroma cacao L.) via somatic embryogenesis. Sci Hortic 229:148–156

    Article  CAS  Google Scholar 

  • Ramirez-Villegas J, Thornton PK (2015) Climate change impacts on African crop production. CCAFS Working Paper No. 119. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen. https://cgspace.cgiar.org/bitstream/handle/10568/66560/WP119_FINAL.pdf?sequence=1. Accessed 22 June 2016

  • Ramtahal G, Yen IC, Bekele I et al (2016) Relationships between cadmium in tissues of cacao trees and soils in plantations of Trinidad and Tobago. Food Nutr Sci 7(1):37–43. https://doi.org/10.4236/fns.2016.71005

    Article  CAS  Google Scholar 

  • Rehem BC, Almeida AA, Corrêa RX et al (2010) Genetic mapping of Theobroma cacao (Malvaceae) seedlings of the Parinari series, carriers of the lethal gene Luteus-Pa. Genet Mol Res 9(3):1775–1784

    Article  CAS  PubMed  Google Scholar 

  • Ribaut JM, De Vicente MC, Delannay X (2010) Molecular breeding in developing countries: challenges and perspectives. Curr Opin Plant Biol 13(2):213–218

    Article  PubMed  Google Scholar 

  • Risterucci AM, Paulin D, Ducamp M et al (2003) Identification of QTLs related to cocoa resistance to three species of Phytophthora. Theor Appl Genet 108(1):168–174

    Article  CAS  PubMed  Google Scholar 

  • Ronning CM, Schnell RJ (1994) Allozyme diversity in a germplasm collection of Theobroma cacao L. J Hered 85(4):291–295

    Article  Google Scholar 

  • Royaert S, Phillips-Mora W, Leal AM et al (2011) Identification of marker-trait associations for self-compatibility in a segregating mapping population of Theobroma cacao L. Tree Genet Genom 7(6):1159–1168

    Article  Google Scholar 

  • Royaert S, Jansen J, Viana da Silva D et al (2016) Identification of candidate genes involved in witches’ broom disease resistance in a segregating mapping population of Theobroma cacao L. in Brazil. BMC Genom 17:107. https://doi.org/10.1186/s12864-016-2415-x

    Article  CAS  Google Scholar 

  • Sackey ST (2003) Novel technologies for disease indexing and screening for CSSVD resistance. In: Bekele F, End MJ, Eskes AB (eds) Proceedings of the international workshop on new technologies and cocoa breeding. Kota Kinabalu, 16–17 October 2000. INGENIC and Malaysian Cocoa Board, Kuala Lumpur, pp 156–162

    Google Scholar 

  • Saibo NJ, Lourenço T, Oliveira MM (2009) Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann Bot 103(4):609–623

    Article  CAS  PubMed  Google Scholar 

  • Sankar AA, Motilal LA, Johnson E et al (2008) Cacao Clones Manual Version 1.1 Trial CD-ROM. Cocoa Tesearch Unit, St. Augustine

    Google Scholar 

  • Santos RC, Pires JL, Lopes UV et al (2005) Assessment of genetic diversity on a sample of cocoa accessions resistant to witches’ broom disease based on RAPD and pedigree data. Bragantia 64(3):361–368

    Article  Google Scholar 

  • Santos RM, Lopes UV, Silva SD et al (2012) Identification of quantitative trait loci linked to Ceratocystis wilt resistance in cacao. Mol Breed 30(4):1563–1571

    Article  CAS  Google Scholar 

  • Saski CA, Feltus FA, Staton ME et al (2011) A genetically anchored physical framework for Theobroma cacao cv. Matina 1-6. BMC Genomics 12(1):1:413–426. http://www.biomedcentral.com/1471-2164/12/4131

  • Saul-Maora J, Namaliu Y, Cilas C, Blaha G (2003) Durability of field resistance to black pod disease of cacao in Papua New Guinea. Plant Dis 87(12):1423–1425

    Article  CAS  PubMed  Google Scholar 

  • Schnell RJ, Brown JS, Kuhn DN et al (2005a) Why would we breed cacao in Florida. Proc Flor State Hort Soc 118:189–191

    Google Scholar 

  • Schnell RJ, Olano CT, Brown JS et al (2005b) Retrospective determination of the parental population of superior cacao (Theobroma cacao L.) seedlings and association of microsatellite alleles with productivity. J Am Soc Hortic Sci 130(2):181–190

    Article  CAS  Google Scholar 

  • Schnell RJ, Brown JS, Kuhn DN et al (2007) Current challenges of tropical tree crop improvement: integrating genomics into an applied cacao breeding program. In: International symposium on biotechnol of temperate fruit crops and tropical species, Florida, 10 October 2005, vol 738, pp 129–144

    Google Scholar 

  • Sena Gomes AR, Andrade Sodré G, Guiltinan, M et al (2015) Supplying new cocoa planting material to farmers: a review of propagation methodologies. http://www.bioversityinternational.org/e-library/publications/detail/supplying-new-cocoa-planting-material-to-farmers-a-review-of-propagation-methodologies/

  • Sereno ML, Albuquerque PS, Vencovsky R, Figueira A (2006) Genetic diversity and natural population structure of cacao (Theobroma cacao L.) from the Brazilian Amazon evaluated by microsatellite markers. Conserv Genet 7(1):13–24

    Article  CAS  Google Scholar 

  • Shi Z, Zhang Y, Maximova SN, Guiltinan MJ (2013) TcNPR3 from Theobroma cacao functions as a repressor of the pathogen defense response. BMC Plant Biol 13(1):204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shires ME, Florez SL, Lai TS et al (2017) Inducible somatic embryogenesis in Theobroma cacao achieved using the DEX-activatable transcription factor-glucocorticoid receptor fusion. Biotechnol Lett 39(11):1747–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shripat C (1993) The recent cocoa (Theobroma cacao L.) germplasm conservation initiatives. The Ministry of Agriculture, Land and Marine Resources, Central Experimental Station, Cocoa Research Section, Trinidad and Tobago. In: Proceedings of the workshop on conservation, characterisation and utilisation of cocoa genetic resources in the 21st century. Port-of-Spain, 13–17 September 1992. Cocoa Research Unit, St. Augustine, pp 239–243

    Google Scholar 

  • Shripat C, Bekele I (1999) Yield response of improved cultivars of cocoa (Theobroma cacao L.) to spacing, pruning and fertilizer. In: Proceedings of the 12th international cocoa research conference, Salvador, 18–22 November 1996. Cocoa Producers’ Alliance, Lagos, pp 879–885

    Google Scholar 

  • Silva CR, Albuquerque PS, Ervedosa FR et al (2011) Understanding the genetic diversity, spatial genetic structure and mating system at the hierarchical levels of fruits and individuals of a continuous Theobroma cacao population from the Brazilian Amazon. Heredity 106(6):973–985

    Article  CAS  PubMed  Google Scholar 

  • Simmonds NW (1981) Genotype (G), environment (E) and GE components of crop yields. Exp Agric 17(04):355–362

    Article  Google Scholar 

  • Simmonds NW (1986) Strategies for disease resistance breeding in tropical perennial crops. In: Breeding for durable resistance in perennial crops. FAO Technical Paper, vol 70, pp 3–15

    Google Scholar 

  • Simmonds NW (1993) The breeding of perennial crops. In: Proceedings of the international workshop on conservation, characterisation and utilisation of cocoa genetic resources in the 21st century, Port-of-Spain, 13–17 September 1992. Cocoa Research Unit, St. Augustine, pp 156–162

    Google Scholar 

  • Simmonds NW (1994) Horizontal resistance to cocoa diseases. Cocoa Grow Bull 47:42–52

    Google Scholar 

  • Simmonds NW (1996) Family selection in plant breeding. Euphytica 90(2):201–208

    Article  Google Scholar 

  • Sitepu B, Mahmud IL, Nelson SP, Lockwood GR (2005) An evaluation of 22 clones at two locations each with three planting densities in Indonesia. In: Eskes AB, Efron Y, End MF, Bekele F (eds) Proceedings of the international workshop on cocoa breeding for improved production systems, Accra, 19–21 October 2003. INGENIC/Ghana Cocoa Board, London/Accra, pp 160–170

    Google Scholar 

  • Solano W (2008) Embriogénesis somática de clones superiores de cacao (Theobroma cacao L.) obtenidos en el Programa de Mejoramiento Genético del CATIE. Tesis M.Sc., CATIE, Costa Rica

    Google Scholar 

  • Solís Bonilla JL, Zamarripa Colmenero A, Pecina Quintero V et al (2015) Evaluación agronómica de híbridos de cacao (Theobroma cacao L.) para selección de alto rendimiento y resistencia en campo a moniliasis. Rev Mex Cienc Agric 6(1):71–82

    Google Scholar 

  • Sondahl MR, Liu S, Bellato C, Bragin A (1993) Cacao somatic embryogenesis. Acta Hortic 336:245–248

    Article  Google Scholar 

  • Soria VJ (1970) Principal varieties of cocoa cultivated in tropical America. Cocoa Grow Bull 15:12–21

    Google Scholar 

  • Soria VJ (1974) Sources of resistance to Phytophthora palmivora. In: Gregory PH (ed) Phytophthora disease of cocoa. Longman, London, pp 197–202

    Google Scholar 

  • Soria VJ (1977) The genetics and breeding of cacao. In: Proceedings of the 5th international cocoa res conference, September 1–9, 1975. Cocoa Producers Alliance, Lagos, pp 18–24

    Google Scholar 

  • Soria VJ (1978) The breeding of cacao (Theobroma cacao L.). Trop Agric Res Ser 11:161–168

    Google Scholar 

  • Sounigo O, N’Goran J, Coulibaly N et al (1994) Evaluation de clones de cacaoyers pour la productivité, la résistance aux mirides et la résistance à la pourriture des cabosses. In: Proceedings of the 11th international cocoa res conference, Yamoussoukro, 18–24 July 1993. COPAL, Lagos, pp 375–381

    Google Scholar 

  • Sounigo O, Christopher Y, Bekele F et al (2003a) The detection of mislabelled trees in the International Cocoa Genebank, Trinidad (ICGT) and options for a global strategy for identification of accessions. In: Eskes AB, End MJ, Bekele F (eds) Proceedings of the international workshop on new technologies and cocoa breeding. Kota Kinabalu, 16–17 October, vol 2000. INGENIC and Malaysia Cocoa Board, Kuala Lumpur, pp 16–17

    Google Scholar 

  • Sounigo O, Lachenaud P, Bastide P et al (2003b) Assessment of the value of doubled haploids as progenitors in cocoa (Theobroma cacao L.) breeding. J Appl Genet 44(3):339–353

    PubMed  Google Scholar 

  • Sounigo O, Umaharan R, Christopher Y et al (2005) Assessing the genetic diversity in the International Cocoa Genebank, Trinidad (ICG, T) using isozyme electrophoresis and RAPD. Genet Resour Crop Evol 52(8):1111–1120

    Article  CAS  Google Scholar 

  • Sounigo O, Bekele FL, Iwaro AD et al (2006) Description of cocoa clones proposed for the CFC/ICCO/IPGRI project collection. Global approaches to cocoa germplasm utilization and conservation. In: Eskes AB, Efron Y (eds) Final rep of the CFC/ICCO/IPGRI project on Cocoa germplasm utilization and conservation: a global approach (1998–2004). CFC/ICCO/IPGRI, Amsterdam/London/Rome, pp 67–81

    Google Scholar 

  • Sounigo O, Efombagn B, Lemainque A et al (2012) Association mapping on cocoa: a way to identify functional SSR markers linked to yield, tolerance to black pod and mirids assessed in Cameroon and develop a marker assisted breeding programme. In: Proceedings of the 16th international cocoa res conference, Bali, 16–21 November 2009. COPAL, Lagos, pp 153–158

    Google Scholar 

  • Souza CA, Dias LA, Aguilar MA et al (2009) Cacao yield in different planting densities. Braz Arch Biol Tech 52(6):1313–1320

    Article  Google Scholar 

  • Stack JC, Royaert S, Gutiérrez O et al (2015) Assessing microsatellite linkage disequilibrium in wild, cultivated, and mapping populations of Theobroma cacao L. and its impact on association mapping. Tree Genet Genomes 11(2):1–16

    Article  Google Scholar 

  • Stigter K (2008) Cocoa and climate change. Can the lame help the blind? http://sitp.rpn.co.id/uploads/riset/kakao/Prosiding%20Kakao%202008%20Cocoa%20And%20Climate%20Change.pdf. Accessed 19 June 2015

  • Struik PC, Yin X (2009) QTL× E× M: combining crop physiology and genetics. In: Østergård H, Lammerts van Bueren ET, Bouwman-Smits L (eds) Proceedings of the BIOEXPLOIT/EUCARPIA workshop on the role of marker assisted selection in breeding varieties for organic agriculture, Wageningen, 25–27 February, 2009. Bio Exploit Project. Wageningen, p 19. http://www.bioexploit.net/ orhttp://www.eucarpia.org/. Accessed 12 Jul 2015

  • Stuber CW, Lincoln SE, Wolff DW et al (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132(3):823–839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stuber CW, Polacco M, Senior ML (1999) Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield potential. Crop Sci 39(6):1571–1583

    Article  Google Scholar 

  • Sukha DA, Butler DR, Umaharan P, Boult E (2008) The use of an optimised organoleptic assessment protocol to describe and quantify different flavor attributes of cocoa liquors made from Ghana and Trinitario beans. Eur Food Res Tech 226(3):405–413

    Article  CAS  Google Scholar 

  • Surujdeo-Maharaj S, Umaharan P, Iwaro AD (2001) A study of genotype-isolate interaction in cacao (Theobroma cacao L.): resistance of cacao genotypes to isolates of Phytophthora palmivora. Euphytica 118(3):295–303

    Article  Google Scholar 

  • Surujdeo-Maharaj S, Umaharan P, Butler DR, Sreenivasan TN (2003) An optimized screening method for identifying levels of resistance to Crinipellis perniciosa in cocoa (Theobroma cacao). Plant Pathol 52(4):464–475

    Article  Google Scholar 

  • Surujdeo-Maharaj S, Umaharan P, Butler DR (2004) Assessment of resistance to witches’-broom disease in clonal and segregating populations of Theobroma cacao. Plant Dis 88(8):797–803

    Article  CAS  PubMed  Google Scholar 

  • Surujdeo-Maharaj S, Umaharan P, Eskes A et al (2009) Inheritance of components of resistance of cocoa to vegetative infection by Moniliophthora perniciosa evaluated through agar-droplet inoculations and correlations with field. In: Eskes AB, Efron Y, End MJ, Bekele F (eds) Proceedings of the international workshop on cocoa breeding for farmers’ needs, San José, 15–17 October 2006. INGENIC/CATIE, Turrialba/London, pp 142–155

    Google Scholar 

  • Susilo AW (2009). Challenges facing cocoa farming in South-East Asia/Pacific Region. Paper presented at the 6th INGENIC workshop on current developments in cocoa genetics and breeding. Bali, 22–24 November 2009. http://www.incocoa.org/data/ingenic_workshop_6_Rep_2009.pdf. Accessed 21 Jan 2016

  • Susilo AW (2011) Analysis for yield stability of the promising cocoa hybrids at diverse agro-climatic conditions. Pelita Perkebunan (Coffee Cocoa Res J) 27(3):168–180

    Google Scholar 

  • Susilo AW, Zhang D, Motilal LA et al (2011) Assessing genetic diversity in Java fine-flavor cocoa (Theobroma cacao L.) germplasm by using simple sequence repeat (SSR) markers. Trop Agr Devel 55(2):84–92

    Google Scholar 

  • Tahi M, Kébé I, Eskes AB et al (2000) Rapid screening of cacao genotypes for field resistance to Phytophthora palmivora using leaves, twigs and roots. Eur J Plant Pathol 106(1):87–94

    Article  Google Scholar 

  • Tahi GM, Kébé BI, N’Goran JA et al (2006a) Expected selection efficiency for resistance to cacao pod rot (Phytophthora palmivora) comparing leaf disc inoculations with field observations. Euphytica 149(1–2):35–44

    Article  Google Scholar 

  • Tahi GM, Kébé BI, Sangare A et al (2006b) Foliar resistance of cacao (Theobroma cacao) to Phytophthora palmivora as an indicator of pod resistance in the field: interaction of cacao genotype, leaf age and duration of incubation. Plant Pathol 55(6):776–782

    Article  Google Scholar 

  • Tahi GM, N’Goran JA, Sounigo O et al (2007) Efficacy of simplified methods to assess pod production in cocoa breeding trials. INGENIC Newsl 11:7–11

    Google Scholar 

  • Takrama JF, Cervantes-Martinez C, Phillips-Mora W et al (2005) Determination of off-types in a cocoa breeding programme using microsatellites. INGENIC Newsl 10:2–8

    Google Scholar 

  • Tan GY (1990) Combining ability analysis of yield and its components in cacao. J Am Soc Hortic Sci 115(3):509–512

    Article  Google Scholar 

  • Tan GY, Tan WK (1990) Additive inheritance of resistance to pod rot caused by Phytophthora palmivora in cocoa. Theor Appl Genet 80(2):258–264

    Article  CAS  PubMed  Google Scholar 

  • Teixeira PJ, Thomazella DP, Vidal RO et al (2012) The fungal pathogen Moniliophthora perniciosa has genes similar to plant PR-1 that are highly expressed during its interaction with cacao. PLoS One 7(9):e45929. https://doi.org/10.1371/journal.pone.0045929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira PJ, de Toledo Thomazella DP, Pereira GA (2015) Time for chocolate: current understanding and new perspectives on cacao witches’ broom disease research. PLoS Pathog 11(10):e1005130. https://doi.org/10.1371/journal.ppat.1005130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ten Hoopen GM, Deberdt P, Mbenoun M, Cilas C (2012) Modelling cacao pod growth: implications for disease control. Ann Appl Biol 160(3):260–272

    Article  Google Scholar 

  • Thomas E, van Zonneveld M, Loo J et al (2012) Present spatial diversity patterns of Theobroma cacao L. in the neotropics reflect genetic differentiation in Pleistocene refugia followed by human-influenced dispersal. PLoS One 7(10):e47676. https://doi.org/10.1371/journal.pone.0047676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiburcio RA, Costa GG, Carazzolle MF et al (2010) Genes acquired by horizontal transfer are potentially involved in the evolution of phytopathogenicity in Moniliophthora perniciosa and Moniliophthora roreri, two of the major pathogens of cacao. J Mol Evol 70(1):85–97

    Article  CAS  PubMed  Google Scholar 

  • Toxopeus H (1969) Cacao, Theobroma cacao L. In: Fenworth FP, Wit F (eds) Outlines of perennial crop breeding in the tropics. Veenman and Zonen, Amsterdam, pp 79–109

    Google Scholar 

  • Toxopeus H (1972) Cocoa breeding: a consequence of mating system heterosis and population structure. In: Wastie RL, Earp DA (eds) Proceedings of the conference on cocoa and coconuts, Kuala Lumpur, 25–27 November 1971. Incorporated Society of Planters, Kuala Lumpur, pp 3–12

    Google Scholar 

  • Toxopeus H, Wessel M (1970) Studies on pod and bean values of Theobroma cacao L. in Nigeria. I. Environmental effects on West African Amelonado with particular attention to annual rainfall distribution. Neth J Agr Sci 18:132–139

    Google Scholar 

  • Trognitz B, Cros E, Assemat S et al (2013) Diversity of cacao trees in Waslala, Nicaragua: associations between genotype spectra, product quality and yield potential. PLoS One 8(1):e54079. https://doi.org/10.1371/journal.pone.0054079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbull CJ, Hadley P (2016) International cocoa germplasm database (ICGD). [Online Database]. CRA Ltd./ICE Futures Europe/University of Reading. http://www.icgd.reading.ac.uk. Accessed 3 Jan 2016

  • Utro F, Haiminen N, Livingstone D et al (2013) iXora: exact haplotype inferencing and trait association. BMC Genet 14(1):48

    Article  PubMed  PubMed Central  Google Scholar 

  • Valenzuela I, Purung HB, Roush RT, Hamilton AJ (2014) Practical yield loss models for infestation of cocoa with cocoa pod borer moth, Conopomorpha cramerella (Snellen). Crop Prot 66:19–28

    Article  Google Scholar 

  • Van der Vossen H (1999) Strategies of variety improvement in cocoa with emphasis on durable disease resistance. An external review prepared for INGENIC. In: Proceedings of the international workshop on the contribution of disease resistance to cocoa variety improvement, Salvador, 25–26 November 1996. INGENIC, London, pp 23–32

    Google Scholar 

  • Van Hall CJJ (1932) Cacao, 2nd edn. Macmillan, London

    Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10(12):621–630

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12(6):e1001883. https://pdfs.semanticscholar.org/8e7a/b7c6a2cfb0db7b8a9f9f62742ad5d62a98f2.pdf

    Article  PubMed  PubMed Central  Google Scholar 

  • Warren JM (1993) Cocoa breeding in the 21st century. In: Proceedings of the workshop on the conservation, characterisation and utilization of cocoa genetic resources in the 21st century. Port-of-Spain, 13–17 September 1992. Cocoa Research Unit, St. Augustine, pp 215–220

    Google Scholar 

  • Warren JM, Kennedy AJ (1991) Cocoa breeding revisited. Cocoa Grow Bull 44:18–24

    Google Scholar 

  • Whitkus R, De la Cruz M, Mota-Bravo L, Gómez-Pompa A (1998) Genetic diversity and relationships of cacao (Theobroma cacao L.) in southern Mexico. Theor Appl Genet 96(5):621–627

    Article  Google Scholar 

  • Wilkinson MJ (2003) The application and constraints of new technologies in plant breeding. In: Proceedings of the international workshop on new technologies in cocoa breeding. Kuala Lumpur, 16–17 October 2000. INGENIC, London, pp 12–24

    Google Scholar 

  • Wood GA, Lass RA (1985) Cocoa, 4th ed. Wiley, London

    Google Scholar 

  • World Cocoa Foundation (2012) Cocoa market update. http://worldcocoafoundation.org/wp-content/uploads/Cocoa-Market-Update-as-of-3.20.2012.pdf. Accessed 6 Mar 2016

  • Yamada MM, Pires JL, Faleiro FG et al (2013) Agronomic performance of 27 cocoa progenies and plant selection based on productivity, self-compatibility and disease resistance. Rev Ceres 60(4):514–518

    Article  Google Scholar 

  • Zaparoli G, Cabrera OG, Medrano FJ et al (2009) Identification of a second family of genes in Moniliophthora perniciosa, the causal agent of witches’ broom disease in cacao, encoding necrosis-inducing proteins similar to cerato-platanins. Mycol Res 113(1):61–72

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Arevalo-Gardini E, Mischke S et al (2006) Genetic diversity and structure of managed and semi-natural populations of cocoa (Theobroma cacao) in the Huallaga and Ucayali Valleys of Peru. Ann Bot 98(3):647–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Boccara M, Motilal L et al (2008) Microsatellite variation and population structure in the “Refractario” cacao of Ecuador. Conserv Genet 9(2):327–337

    Article  Google Scholar 

  • Zhang D, Mischke S, Johnson ES et al (2009a) Molecular characterization of an international cacao collection using microsatellite markers. Tree Genet Genomes 5(1):1–10

    Article  Google Scholar 

  • Zhang D, Boccara M, Motilal L (2009b) Molecular characterization of an earliest cacao (Theobroma cacao L.) collection from Upper Amazon using microsatellite DNA markers. Tree Genet Genomes 5(4):595–607

    Article  Google Scholar 

  • Zhang D, Martínez WJ, Johnson ES et al (2012) Genetic diversity and spatial structure in a new distinct Theobroma cacao L. population in Bolivia. Genet Resour Crop Evol 59(2):239–252

    Article  Google Scholar 

  • Zhang Y, Maximova SN, Guiltinan MJ (2015) Characterization of a stearoyl-acyl carrier protein desaturase gene family from chocolate tree, Theobroma cacao L. Front Plant Sci 6:239–251. https://doi.org/10.3389/fpls.2015.00239

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances Bekele .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix I: Some of the Most Widely Used Clones in Cacao Breeding and Others with Multiple Superior Traits

Cacao accession

Traditional classification

Pod Index1 (assessed in Trinidad)

Disease resistance and other favorable trait

Comment

IMC 67

UAF (Iquitos)

20.0

Resistance to witches’ broom disease (WB), cocoa swollen shoot virus (CSSV) and Ceratocystis wilt, good yield potentialBE

Utilized at 34 locations (ICGD online)T

SCA 6

UAF (Contamana)

43.5

Tolerance to WB (widely); produces many fruits per tree

Utilized at 30 locations (ICGD online)

ICS 1

Trinitario

19.9

Resistance to black pod disease (BP) and WB E P

Utilized in 29 locations (ICGD online)

Pod resistance to WBD L

Hard pod wall, large bean weight, favorable yield potentialBe

ICS 6

Trinitario

17.5

Large bean weight, favorable yield potential, potentially tolerant to Ceratocystis wilt

Utilized at 26 locations (ICGD online)

SCA 12

UAF (Contamana)

31.0

Resistance to WB

Utilized at 26 locations (ICGD online)

ICS 95

Trinitario

22.0

Fair yield potential, adaptable, tolerance to frosty Pod (FP), tolerance to vascular streak dieback (VSD)

Utilized at 25 locations (ICGD online)

UF 667

Trinitario

28.0

Resistance to VSD

Utilized at 24 locations (ICGD online)

UF 676

Trinitario

17.0

Large bean weight, favorable yield potential (Trinidad and Tobago, Malaysia)

Utilized at 24 locations (ICGD online)

ICS 100

Trinitario

19.0

Large bean weight, favorable yield potential, Nicaraguan Criollo pedigree

Utilized at 24 locations (ICGD online)

SPA 9

Unclassified

29.3

BP resistance

Utilized at 23 locations (ICGD online)

UF 221

Trinitario

17.0

Favorable yield potential, bean size and weight

Utilized at 23 locations (ICGD online)

ICS 39

Trinitario

22.1

Favorable yield potential, Nicaraguan Criollo pedigree

Utilized at 22 locations (ICGD online)

POUND 7

UAF (Nanay)

22.0

Good general and specific combining ability for yieldMM (favored parent in Costa Rica, Ghana). Resistance to black pod

Utilized at 22 locations (ICGD online); Adomako and Adu-Ampomah (2005)

ICS 16

Trinitario

17.3

Favorable yield potential, bean size and weight

Utilized at 21 locations (ICGD online)

PA 121

UAF (Marañon)

30.6

Potential resistance to BP and WB, Favorable yield per hectare, used in breeding in Brazil

Utilized at 21 locations (ICGD online); Bekele et al. (2008b)

CC 10

Unclassified

14.7

Highly favorable yield potential, bean weight and size

Utilized at 20 locations (ICGD online)

ICS 60

Trinitario

16.5

Pod resistance to WBD, favorable yield potential and bean size and weight

Utilized at 20 locations (ICGD online)

GS 36

Trinitario

23.2

Fair yield potential, bean size and weight

Utilized at 20 locations (ICGD online)

ICS 40

Trinitario

20.8

Fair yield potential, Nicaraguan Criollo pedigree

Utilized at 19 locations (ICGD online)T

UF 613

Trinitario

26.9

Moderately fair yield potential, potential resistance to BP, Criollo pedigree

Utilized at 18 locations (ICGD online)

SIAL 93

LAF

24.8

Fair yield potential

Utilized at 18 locations (ICGD online)

ICS 8

Trinitario

19.8

Favorable yield potential, good bean weight and size

Utilized at 18 locations (ICGD online)

ICS 89

Trinitario

28.3

Good combining ability

Utilized at 17 locations (ICGD online)

UF 705

Trinitario

Fair yield potential (Costa Rica)

Utilized at 16 locations (ICGD online)

CC 11

Unclassified

Favorable yield potential (Malaysia)

Utilized at 16 locations (ICGD online)

SCA 9

UAF (Contamana)

19.7

Resistance to VSDB, favorable yield potential

Utilized at 16 locations (ICGD online)

PA 35

UAF (Marañon)

Fair yield potential, bean weight (Malaysia)

Utilized at 16 locations (ICGD online)

NA 33

UAF (Nanay)

39.8

Moderate tolerance to VSD (Malaysia), BP (Brazil) and CSSV

Utilized at 16 locations (ICGD online)

UF 11

Trinitario

13.9

Excellent yield potential, bean size and weight, tolerant to VSD (Malaysia)

Utilized at 15 locations (ICGD online)

NA 32

UAF (Nanay)

30.6

Tolerant to CSSV, limited tolerance to BP (Togo)

Utilized at 15 locations (ICGD online)

GS 29

Trinitario

17.6

Favorable yield potential, bean weight and size

Utilized at 15 locations (ICGD online)

UF 29

Trinitario

19.3

Favorable yield potential

Utilized at 15 locations (ICGD online)

CATONGO

Amelonado

35.6

Homozygous mutant

Utilized at 15 locations (ICGD online); Clément et al. (2003a, b)

PA 150

UAF (Marañon)

27.4

Resistance to BPIL, good combining ability

Utilized at 15 locations (ICGD online); Adomako and Adu-Ampomah (2005), Freeman (1982), and Paulin et al. (1994)

IMC 47

UAF (Iquitos)

27.4

Potential resistance to BP and WB and tolerance to CSSV

Utilized at 15 locations (ICGD online)

PA 107

UAF (Marañon)

30.3

Favorable butterfat content (more than 55%)

Utilized at 15 locations (ICGD online)

RIM 2[MEX]

Criollo/Trinitario

39.7

Good bean size, potential moderate and resistance to BP

Utilized at 14 locations (ICGD online)

RIM 10[MEX]

Criollo/Trinitario

Good bean size, yield potential (Mexico)

Utilized at 14 locations (ICGD online)

POUND 10

UAF (Nanay)

42

Good butterfat content (Malaysia), potential resistance to CSSV (Ghana)

Utilized at 14 locations (ICGD online)

CAS 1

LAF

44.1

Fair bean size, potential tolerance to BP (Costa Rica)

Utilized at 14 locations (ICGD online)T

IMC 14

UAF (Iquitos)

25.2

Fair yield potential, butterfat content

Utilized at 14 locations (ICGD online)

ICS 98

Trinitario

30.5

Potential resistance to WB

Utilized at 14 locations (ICGD online)

EET 400

UAF (Curaray)

19.8

Potential WB and Ceratocystis wilt resistance, favorable yield potential

Utilized at 14 locations (ICGD online)

NA 34

UAF (Nanay)

26

Potential resistance to CSSV

Utilized at 14 locations (ICGD online)

UF 168

Trinitario

23.8

Fair yield potential, good bean size (Costa Rica, Malaysia)

Utilized at 14 locations (ICGD online)

PA 13

UAF (Marañon)

31.3

Potential BP resistance (Côte d’Ivoire, Mexico, Costa Rica)

Utilized at 14 locations (ICGD online)

BE 10

LAF (Amelonado)

26.8

Fair yield potential, butterfat content

Utilized at 14 locations (ICGD online)

RIM 117[MEX]

Criollo/Trinitario

18.7

Favorable yield potential (Mexico, Trinidad and Tobago), good bean size

Utilized at 13 locations (ICGD online)

ICS 45

Trinitario

21.2

Potential WB and BP resistance, fair yield potential, bean size

Utilized at 13 locations (ICGD online)

CC 41

Unclassified

(UF 276 × unclassified)

28.0

Tolerant to WB (Brazil)

Utilized at 13 locations (ICGD online)

CC 38

Unclassified

(UF 276 × MATINA?)

26.1

Fair yield potential (Costa Rica, Malaysia)

Utilized at 13 locations (ICGD online)

PA 7

UAF (Marañon)

 

Moderate resistance to BP, good combining ability, tolerance to CSSV (Ghana), Good female parent in crosses designed for Ceratocystis control in Bahia, Brazil

Utilized at 13 locations (ICGD online); Bekele et al. (2008b); Adomako and Adu-Ampomah (2005).

PA 56

UAF (Marañon)

32

Good combining ability for wet seed weight (Trinidad and Tobago)

Utilized at 13 locations (ICGD online)

ICS 84

Trinitario

28.3

Fair yield potential, bean weight (Malaysia)

Utilized at 13 locations (ICGD online)

ICS 68

Trinitario

15.9

Favorable yield potential, bean size and weight

Bekele et al. (2009)

UF 12

Trinitario

14.8

Favorable yield potential, bean size and weight, pod resistance to BPI

Utilized at 8 locations (ICGD online)

JA 5/31

Refractario

16.4

Favorable yield potential

Iwaro et al. (2003)

ICS 5

Trinitario

16.9

Favorable yield potential, bean weight and size

Bekele et al. (2014)

IMC 97

UAF (Iquitos)

17.0

Favorable yield potential, fair bean size

Iwaro et al. (2003)

Silecia 8 (EET 395)

Trinitario

17.4

Favorable yield potential, bean size

Bekele et al. (2006)

EET 59[ECU]

Unclassified

17.61

Favorable yield potential, resistance to BPD E I P

Iwaro et al. (2003); Utilized at 7 locations (ICGD online)

POUND 18

UAF

17.7

Resistant to Ceratocystis fimbriata, potential resistance to BP, WP, favorable yield potential (many beans)

Maharaj et al. (2011); Shripat (1993)

ICS 85

Trinitario

18.1

Favorable yield potential, pod resistance to WBD

Iwaro et al. (2003)

ICS 43

Trinitario

18.9

Fair yield potential, good bean weight, Nicaraguan Criollo pedigree

Utilized at 8 locations (ICGD online)T

ICS 75

Trinitario

19.07

Fair yield potential, bean weight and size

Utilized at 12 locations (ICGD online)T

IMC 10

UAF (Iquitos)

19.0

Favorable yield potential

Utilized at 8 locations (ICGD online)

EET 272

Unclassified: Forastero ‘Amarillo’ type × Unclassified

25.0

Potential resistance to BP, WB, Ceratocystis wilt, fair yield potential

Utilized at 11 locations (ICGD online)

IMC 78

Iquitos

23.0

Fair yield potential, potential resistance to WB and CSSV

Utilized at 7 locations (ICGD online); Clément et al. (2003a, b)

ICS 48

Trinitario

20.0

Fair yield potential, bean weight and size

Utilized at 10 locations (ICGD online)

EET 399

Unclassified: Silecia 1 × unclassified

24.4

Tolerance to VSD, moderate resistance to BPM

Utilized at 12 locations (ICGD online)

ICS 10

Trinitario

21.0

Moderate resistance to FP, potential resistance to BP, flower and cushion resistance to WBD, good yield potential

Ducamp (1994)

  1. BaBartley and Chalmers (1970)
  2. BeBekele et al. (1996b)
  3. BBong and Lee (1999)
  4. DDucamp (1994)
  5. EEnríquez and Soria (1999)
  6. IIwaro et al. (1999)
  7. LLuz et al. (1999)
  8. MMMorera and Mora (1991)
  9. MMorera (1996)
  10. PPhillips-Mora (1999)
  11. TTurnbull and Hadley (online)
  12. Pod index is derived by dividing 1000 by the product of bean number and individual bean weight in grammes

1.2 Appendix II: Listing of Major Cacao Research Institutes

Institute

Acronym

Location

Specialization

Contact

Centro de Pesquisas do Cacau

CEPEC

Brazil

Conservation, genetic improvement, screening for yield, disease resistance, quality, gene discovery.

Dr. Jose Luis Pires

joseluis@cepec.gov.br

http://www.ceplac.gov.br/pesquisa.htm

The Executive Commission for the Cocoa Farming Plan

CEPLAC

Brazil

Genetic diversity enrichment, conservation, improvement for yield, disease and pest resistance etc. Physiology, nutrient studies, heavy metal research, application of biotechnology for gene discovery, breeding with genomics .

Dr. Uilson López

uvlopesbr@gmail.com

http://www.ceplac.gov.br/index.asp

Institut of Agricultural Research for Development

IRAD

Cameroun

Partners with CIRAD, France on genetic improvement for disease and pest resistance, yield and agroforestry

Dr. Mousseni Efombagn,

efombagn@yahoo.fr

http://iradcameroun.cm/fr

Corporación Colombiana de Investigación Agropecuaria

CCIA

Colombia

Conservation, genetic improvement, genomics

atencionalcliente@corpoica.org.co

http://www.corpoica.org.co/menu/ps/prod/cacao/

Tropical Agricultural Research and Higher Education Center

CATIE

Costa Rica

Conservation, genetic improvement for yield, disease resistance (especially for Frosty Pod), quality etc., with the application of biotechnology

Dr. Rolando Cerda.

rcerda@catie.ac.cr;

https://www.catie.ac.cr/en/

Centre national de recherche agronomique

CNRA

Côte d’Ivoire

Genetic improvement for yield, productivity disease control through conventional methods and the application of molecular tools

Dr. Desire Pokou

pokoudesire@yahoo.fr;

Tahi Gnion Mathias

tahi_mathias(at)yahoo.fr

http://www.cnra.ci/

Instituto Dominicano de Investigaciones Agropecuarias y Forestales

INDIAF

Dominican Republic

Conservation, genetic improvement, quality improvement

Ms. Marisol Ventura López

mventura(at)idiaf.gov.do

http://www.idiaf.gov.do/

Instituto Nacional Autónomo de Investigaciones Agropecuarias

INIAP

Ecuador

Conservation, genetic improvement, diversity studies, disease control, flavor and quality, cadmium remediation, agroforestry

Dr. Rey Gastón Loor

rey.loor@iniap.gob.ec;

Freddy Amores

freddy.amores(at)iniap.gob.ec

http://www.iniap.gob.ec/web/cacao/

Centre de Coopération Internationale en Recherche Agronomique pour le Développement

CIRAD

France

Genomics, genetic improvement and breeding, control of pests and diseases, agronomy, physiology, cropping systems, agroforestry, postharvest processing

Dr. Christian Cilas

christian.cilas@cirad.fr;

Dr. Claire Lanaud

claire.lanaud@cirad.fr

http://www.cirad.fr/

Cocoa research Institute of Ghana

CRIG

Ghana

Genetic improvement, breeding, agronomy, physiology, biochemistry, entomology, pathology, soil science, value-added product development

Dr. Francis Kwame Padi

padifrancis@yahoo.co.uk

http://crig.org.gh/

Central Plantation Crops Research Institute

CPCRI

India

Conservation, genetic improvement, mixed cropping

Dr. Elain Apshara

elain_apshara(at)yahoo.co.in

Indonesian Coffee and Cocoa Research Institute

ICCI

Indonesia

Conservation, genetic improvement,

Dr. Eben Haeser eben.haeser@londonsumatra.com

Malaysian Cocoa Board

MCB

Malaysia

Conservation, genetic improvement, molecular studies

Dr. Haya Ramba

hayaramba(at)koko.gov.my

Cocoa Research Institute of Nigeria

CRIN

Nigeria

Genetic improvement, disease and control,

Value-added product development

Dr. Daniel Adewale

d.adewale(at)gmail.com or dadewale(at)cgiar.org

http://www.crin-ng.org/index.php

Cocoa and Coconut Institute

CCI

Papua New Guinea

Conservation, genetic improvement

Dr. James Butubu

butubu(at)yahoo.com.au

Instituto de Cultivos Tropicales

ICT

Perú

Germplasm collection, conservation, genetic improvement for pest and disease resistance and quality, cadmium remediation and heavy metal studies

Dr. Enrique Arevalo-Gardini

e.arevalo@ict-peru.org; e.arevalo.ict@terra.com.pe; enriquearevaloga@gmail.com

http://www.ict-peru.org/

Cocoa Research Centre

CRC

Trinidad and Tobago

Conservation, germplasm enhancement, characterization, evaluation, utilization of cocoa genetic resources, research on diversity, genomics, disease control, flavor and quality studies, cadmium uptake and remediation

Prof. Pathmanathan Umaharan

pathmanathan.umaharan@sta.uwi.edu

http://sta.uwi.edu/cru/index.asp

International Cocoa Quarantine Centre, University of Reading

ICQC, R

United Kingdom

Provision of intermediate quarantine in a temperate country for the safe movement of cacao germplasm between producing countries

Dr. Andrew Daymond

a.j.daymond(at)reading.ac.uk

Penn State University

PSU

USA

Plant development, genetic transformation, propagation, engineering, functional genomics, proteomics, metabolomics, regulation of gene expression, plant defense responses, starch biosynthesis

Prof. Mark Guiltinan

mjg9@psu.edu

Dr. Siela Maximova

snm104@psu.edu

http://plantscience.psu.edu/research/labs/guiltinan

United States Department of Agriculture, Agricultural Research Service,

Tropical Agriculture Research Station

USDA/ARS

USA and Mayaguez, Puerto Rico (PR)

Conservation, genetic improvement, genomics, marker-assisted selection, diversity studies, genomics-assisted breeding

Dr. Ricardo Goyenaga Ricardo.Goenaga@ARS.USDA.GOV

Dr. Dapeng Zhang

dapeng.zhang@ars.usda.gov;

Dr. Lyndel Meinhart

Lyndel.Meinhardt@ars.usda.gov;

Dr. Osman Guitterez osman.gutierrez@ars.usda.gov

Instituto Nacional de Investigaciones Agrícolas

INIA

Venezuela

Rescue and conservation of genetic resources, particularly Criollos, characterisation, genetic improvement including for disease resistance, flavor and quality

Dr. Alvaro Gómez Morales

Email: Agomez153(at)gmail.com

http://www.inia.gov.ve/

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bekele, F., Phillips-Mora, W. (2019). Cacao (Theobroma cacao L.) Breeding. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Industrial and Food Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-23265-8_12

Download citation

Publish with us

Policies and ethics