Skip to main content

Environmental Applications of Methanotrophs

  • Chapter
  • First Online:
Methanotrophs

Part of the book series: Microbiology Monographs ((MICROMONO,volume 32))

Abstract

Methanotrophs are microorganisms that are able to utilize methane as the electron donor and carbon source. For long, methanotrophs have been widely studied for their application in environmental biotechnology , due mainly to the exclusive ownership of the unique enzymes that mediate oxidation of methane to methanol , namely the particulate methane monooxygenases (pMMO) and soluble methane monooxygenases (sMMO) . Utilizing these methane monooxygenases , methanotrophs are capable of co-oxidizing a broad range of organic pollutants including chlorinated ethenes . Thus, methanotrophs have long been studied and utilized as biocatalysts for in situ bioremediation of soil and aquatic environments contaminated with these xenobiotic compounds . Due to the growing concerns in anthropogenically induced climate change and global warming , methanotrophs have increasingly gained attention also for greenhouse gas mitigation purposes. Active methane removal using methanotrophic biofilters of diverse configurations have proven to be effective for treatments of gases with relatively high methane concentrations, e.g., landfill gases and animal husbandry tank exhausts. Furthermore, improving the atmospheric methane sink capability of agricultural soils has been one of the foremost foci of climate-smart soil research. This chapter provides an extensive overview of scientific and engineering breakthroughs geared towards practical applications of methanotroph biotechnology in managing impending environmental problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez RA, Pacala SW, Winebrake JJ, Chameides WL, Hamburg SP (2012) Greater focus needed on methane leakage from natural gas infrastructure. Proc Nat Acad Sci 109:6435–6440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Cohen L, McCarty PL (1991) Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells. Appl Environ Microbiol 57:1031–1037

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alvarez-Cohen L, Speitel GE (2001) Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation 12:105–126

    Article  CAS  PubMed  Google Scholar 

  • Amos BK, Ritalahti KM, Cruz-Garcia C, Padilla-Crespo E, Loffler FE (2008) Oxygen effect on Dehalococcoides viability and biomarker quantification. Environ Sci Technol 42:5718–5726

    Article  CAS  PubMed  Google Scholar 

  • Anderson JE, McCarty PL (1997) Transformation yields of chlorinated ethenes by a methanotrophic mixed culture expressing particulate methane monooxygenase. Appl Environ Microbiol 63:687–693

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baani M, Liesack W (2008) Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Nat Acad Sci 105:10203–10208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baral BS, Bandow NL, Vorobev A, Freemeier BC, Bergman BH, Herdendorf TJ, Fuentes N, Ellias L, Turpin E, Semrau JD, DiSpirito AA (2014) Mercury binding by methanobactin from Methylocystis strain SB2. J Inorg Biochem 141:161–169

    Article  CAS  PubMed  Google Scholar 

  • Benner J, De Smet D, Ho A, Kerckhof F-M, Vanhaecke L, Heylen K, Boon N (2015) Exploring methane-oxidizing communities for the co-metabolic degradation of organic micropollutants. Appl Microbiol Biotechnol 99:3609–3618

    Article  CAS  PubMed  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Brenzinger K, Drost SM, Korthals G, Bodelier PLE (2018) Organic residue amendments to modulate greenhouse gas aes from agricultural soils. Front Microbiol 9:3035

    Article  PubMed Central  PubMed  Google Scholar 

  • Brockman FJ, Payne W, Workman DJ, Soong A, Manley S, Hazen TC (1995) Effect of gaseous nitrogen and phosphorus injection on in situ bioremediation of a trichloroethylene-contaminated site. J Hazard Mater 41:287–298

    Article  CAS  Google Scholar 

  • Brown K, Tegoni M, Prudêncio M, Pereira AS, Besson S, Moura JJ, Moura I, Cambillau C (2000) A novel type of catalytic copper cluster in nitrous oxide reductase. Nat Struct Mol Biol 7:191–195

    Article  CAS  Google Scholar 

  • Bull ID, Parekh NR, Hall GH, Ineson P, Evershed RP (2000) Detection and classification of atmospheric methane oxidizing bacteria in soil. Nature 405:175–178

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Zheng Y, Bodelier PLE, Conrad R, Jia Z (2016) Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat Commun 7:11728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carrión VJ, Cordovez V, Tyc O, Etalo DW, de Bruijn I, de Jager VCL, Medema MH, Eberl L, Raaijmakers JM (2018) Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils. ISME J 12:2307–2321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cayuela ML, Oenema O, Kuikman PJ, Bakker RR, van Groenigen JW (2010) Bioenergy by-products as soil amendments? Implications for carbon sequestration and greenhouse gas emissions. Glob Change Biol Bioenergy 2:201–213

    CAS  Google Scholar 

  • Chang J, Gu W, Park D, Semrau JD, DiSpirito AA, Yoon S (2018) Methanobactin from Methylosinus trichosporium OB3b inhibits N2O reduction in denitrifiers. ISME J 12:2086–2089

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Y, Dumont MG, Cébron A, Murrell JC (2007) Identification of active methanotrophs in a landfill cover soil through detection of expression of 16S rRNA and functional genes. Environ Microbiol 9:2855–2869

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Dumont MG, McNamara NP, Chamberlain PM, Bodrossy L, Stralis-Pavese N, Murrell JC (2008) Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses. Environ Microbiol 10:446–459

    Article  CAS  PubMed  Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jone C, Quéré CL, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J et al (eds) Climate change 2013: the physical science basis contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 465–570

    Google Scholar 

  • DiSpirito AA, Semrau JD, Murrell JC, Gallagher WH, Dennison C, Vuilleumier S (2016) Methanobactin and the link between copper and bacterial methane oxidation. Microbiol Mol Biol Rev 80:387–409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duba AG, Jackson KJ, Jovanovich MC, Knapp RB, Taylor RT (1996) TCE remediation using in situ, resting-state bioaugmentation. Environ Sci Technol 30:1982–1989

    Article  CAS  Google Scholar 

  • Dunfield PF, Conrad R (2000) Starvation alters the apparent half-saturation constant for methane in the type II methanotroph Methylocystis strain LR1. Appl Environ Microbiol 66:4136–4138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eguchi M, Kitagawa M, Suzuki Y, Nakamuara M, Kawai T, Okamura K, Sasaki S, Miyake Y (2001) A field evaluation of in situ biodegradation of trichloroethylene through methane injection. Water Res 35:2145–2152

    Article  CAS  PubMed  Google Scholar 

  • Eisentraeger A, Klag P, Vansbotter B, Heymann E, Dott W (2001) Denitrification of groundwater with methane as sole hydrogen donor. Water Res 35:2261–2267

    Article  CAS  PubMed  Google Scholar 

  • Elango NA, Radhakrishnan R, Froland WA, Wallar BJ, Earhart CA, Lipscomb JD, Ohlendorf DH (1997) Crystal structure of the hydroxylase component of methane monooxygenase from Methylosinus trichosporium OB3b. Protein Sci 6:556–568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Forrester SB, Han J-I, Dybas MJ, Semrau JD, Lastoskie CM (2005) Characterization of a mixed methanotrophic culture capable of chloroethylene degradation. Environ Eng Sci 22:178–186

    Article  Google Scholar 

  • Fox BG, Froland WA, Dege JE, Lipscomb JD (1989) Methane monooxygenase from Methylosinus trichosporium OB3b. Purification and properties of a three-component system with high specific activity from a type II methanotroph. J Biol Chem 264:10023–10033

    CAS  PubMed  Google Scholar 

  • Ganendra G, De Muynck W, Ho A, Hoefman S, De Vos P, Boeckx P, Boon N (2014) Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials. Appl Microbiol Biotechnol 98:3791–3800

    Article  CAS  PubMed  Google Scholar 

  • Ganendra G, Mercado-Garcia D, Hernandez-Sanabria E, Peiren N, De Campeneere S, Ho A, Boon N (2015) Biofiltration of methane from ruminants gas effluent using autoclaved aerated concrete as the carrier material. Chem Eng J 277:318–323

    Article  CAS  Google Scholar 

  • Gebert J, Gröngröft A (2006) Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane. Waste Manage 26:399–407

    Article  CAS  Google Scholar 

  • Gebert J, Gröengröeft A, Miehlich G (2003) Kinetics of microbial landfill methane oxidation in biofilters. Waste Manage 23:609–619

    Article  CAS  Google Scholar 

  • Gebert J, Gröngröft A, Schloter M, Gattinger A (2004) Community structure in a methanotroph biofilter as revealed by phospholipid fatty acid analysis. FEMS Microbiol Lett 240:61–68

    Article  CAS  PubMed  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  PubMed  Google Scholar 

  • Han J-I, Lontoh S, Semrau JD (1999) Degradation of chlorinated and brominated hydrocarbons by Methylomicrobium album BG8. Arch Microbiol 172:393–400

    Article  CAS  PubMed  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hartmann M, Frey B, Mayer J, Mäder P, Widmer F (2014) Distinct soil microbial diversity under long-term organic and conventional farming. ISME J 9:1177–1194

    Article  PubMed Central  PubMed  Google Scholar 

  • Hays SG, Patrick WG, Ziesack M, Oxman N, Silver PA (2015) Better together: engineering and application of microbial symbioses. Curr Opin Biotechnol 36:40–49

    Article  CAS  PubMed  Google Scholar 

  • Hazen TC, Looney BB, Enzien M, Franck MM, Fliemans CB, Eddy CA (1993) In-situ bioremediation via horizontal wells. I&EC Special Symposium, American Chemical Society, Atlanta, GA

    Google Scholar 

  • Hazen TC, Chakraborty R, Fleming JM, Gregory IR, Bowman JP, Jimenez L, Zhang D, Pfiffner SM, Brockman FJ, Sayler GS (2009) Use of gene probes to assess the impact and effectiveness of aerobic in situ bioremediation of TCE. Arch Microbiol 191:221–232

    Article  CAS  PubMed  Google Scholar 

  • He J, Ritalahti KM, Aiello MR, Löffler FE (2003a) Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species. Appl Environ Microbiol 69:996–1003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He J, Ritalahti KM, Yang K-L, Koenigsberg SS, Löffler FE (2003b) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424:62–65

    Article  CAS  PubMed  Google Scholar 

  • Ho A, Kerckhof F-M, Luke C, Reim A, Krause S, Boon N, Bodelier PLE (2013) Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. Environ Microbiol Rep 5:335–345

    Article  CAS  PubMed  Google Scholar 

  • Ho A, de Roy K, Thas O, De Neve J, Hoefman S, Vandamme P, Heylen K, Boon N (2014) The more, the merrier: heterotroph richness stimulates methanotrophic activity. ISME J 8:1945–1948

    Article  PubMed Central  PubMed  Google Scholar 

  • Ho A, Reim A, Kim SY, Meima-Franke M, Termorshuizen A, de Boer W, van der Putten WH, Bodelier PL (2015) Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application. Glob Change Biol 21:3864–3879

    Article  Google Scholar 

  • Ho A, Angel R, Veraart AJ, Daebeler A, Jia Z, Kim SY, Kerckhof F-M, Boon N, Bodelier PLE (2016) Biotic interactions in microbial communities as modulators of biogeochemical processes: methanotrophy as a model system. Front Microbiol 7:1285

    Article  PubMed Central  PubMed  Google Scholar 

  • Ho A, Ijaz UZ, Janssens TKS, Ruijs R, Kim SY, de Boer W, Termorshuizen A, van der Putten WH, Bodelier PLE (2017) Effects of bio-based residue amendments on greenhouse gas emission from agricultural soil are stronger than effects of soil type with different microbial community composition. Glob Change Biol Bioenergy 9:1707–1720

    Article  CAS  Google Scholar 

  • Ho A, Mo Y, Lee HJ, Sauheitl L, Jia Z, Horn MA (2018) Effect of salt stress on aerobic methane oxidation and associated methanotrophs; a microcosm study of a natural community from a non-saline environment. Soil Biol Biochem 125:210–214

    Article  CAS  Google Scholar 

  • Ho A, Lee HJ, Reumer M, Meima-Franke M, Raaijmakers C, Zweers H, de Boer W, can der Putten WH, Bodelier PLE (2019) Unexpected role of canonical aerobic methanotrophs in upland agricultural soils. Soil Biol Biochem 131:1–8

    Article  CAS  Google Scholar 

  • Holliger C, Wohlfarth G, Diekert G (1998) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22:383–398

    Article  CAS  Google Scholar 

  • Hou Y, Velthof GL, Oenema O (2015) Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment. Global Change Biol 21:1293–1312

    Article  Google Scholar 

  • Hulse CL, Tiedje JM, Averill BA (1989) Evidence for a copper-nitrosyl intermediate in denitrification by the copper-containing nitrite reductase of Achromobacter cycloclastes. J Am Chem Soc 111:2322–2323

    Article  CAS  Google Scholar 

  • Iguchi H, Yurimoto H, Sakai Y (2011) Stimulation of methanotrophic growth in cocultures by cobalamin excreted by rhizobia. Appl Environ Microbiol 77:8509–8515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • in ’t Zandt MH, van den Bosch TJM, Rijkers R, van Kessel MAHJ, MSM J, Welte CU (2018) Co-cultivation of the strictly anaerobic methanogen Methanosarcina barkeri with aerobic methanotrophs in an oxygen-limited membrane bioreactor. Appl Microbiol Biotechnol 102:5685–5694

    Article  CAS  Google Scholar 

  • Islam T, Torsvik V, Larsen Ø, Bodrossy L, Øvreås L, Birkeland N-K (2016) Acid-tolerant moderately thermophilic methanotrophs of the class Gammaproteobacteria isolated from tropical topsoil with methane seeps. Front Microbiol 7:851

    PubMed Central  PubMed  Google Scholar 

  • Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ, Murrell JC, Xing X-H (2010) Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J 49:277–288

    Article  CAS  Google Scholar 

  • Keck J, Sims RC, Coover M, Park K, Symons B (1989) Evidence for cooxidation of polynuclear aromatic hydrocarbons in soil. Water Res 23:1467–1476

    Article  CAS  Google Scholar 

  • Kenney GE, Sadek M, Rosenzweig AC (2016) Copper-responsive gene expression in the methanotroph Methylosinus trichosporium OB3b. Metallomics 8:931–940

    Article  CAS  PubMed  Google Scholar 

  • Khadka R, Clothier L, Wang L, Lim CK, Klotz MG, Dunfield PF (2018) Evolutionary history of copper membrane monooxygenases. Front Microbiol 9:2493

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim HJ, Graham DW, DiSpirito AA, Alterman MA, Galeva N, Larive CK, Asunskis D, Sherwood PMA (2004) Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria. Science 305:1612–1615

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Kim DD, Yoon S (2018) Rapid isolation of fast-growing methanotrophs from environmental samples using continuous cultivation with gradually increased dilution rates. Appl Microbiol Biotechnol 102:5707–5715

    Article  CAS  PubMed  Google Scholar 

  • Kip N, Ouyang W, van Winden J, Raghoebarsing A, van Niftrik L, Pol A, Pan Y, Bodrossy L, van Donselaar EG, Reichart GJ, Jetten MS, Damsté JS, Op den Camp HJ (2011) Detection, isolation, and characterization of acidophilic methanotrophs from sphagnum mosses. Appl Environ Microbiol 77:5643–5654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kittelmann S, Friedrich MW (2008) Novel uncultured Chloroflexi dechlorinate perchloroethene to trans-dichloroethene in tidal flat sediments. Environ Microbiol 10:1557–1570

    Article  CAS  PubMed  Google Scholar 

  • Knief C, Dunfield PF (2005) Response and adaptation of different methanotrophic bacteria to low methane mixing ratios. Environ Microbiol 7:1307–1317

    Article  CAS  PubMed  Google Scholar 

  • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334

    Article  CAS  PubMed  Google Scholar 

  • Kolb S, Knief C, Dunfield PF, Conrad R (2005) Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils. Environ Microbiol 7:1150–1161

    Article  CAS  PubMed  Google Scholar 

  • Krause SMB, Johnson T, Samadhi Karunaratne Y, Fu Y, Beck DAC, Chistoserdova L, Lidstrom ME (2017) Lanthanide-dependent cross-feeding of methane-derived carbon is linked by microbial community interactions. Proc Nat Acad Sci 114:358–363

    Article  CAS  PubMed  Google Scholar 

  • Kumaresan D, Stephenson J, Doxey AC, Bandukwala H, Brooks E, Hillebrand-Voiculescu A, Whiteley AS, Murrell JC (2018) Aerobic proteobacterial methylotrophs in Movile Cave: genomic and metagenomic analyses. Microbiome 6:1

    Article  PubMed Central  PubMed  Google Scholar 

  • Kwon M, Ho A, Yoon S (2018) Novel approaches and reasons to isolate methanotrophic bacteria with biotechnological potentials: recent achievements and perspectives. Appl Microbiol Biotechnol 103:1–8

    Article  CAS  PubMed  Google Scholar 

  • La H, Hettiaratchi JPA, Achari G, Dunfield PF (2018) Biofiltration of methane. Bioresour Technol 268:759–772

    Article  CAS  PubMed  Google Scholar 

  • Leahy JG, Batchelor PJ, Morcomb SM (2003) Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev 27:449–479

    Article  CAS  PubMed  Google Scholar 

  • Lee S-W, Keeney DR, Lim D-H, Dispirito AA, Semrau JD (2006) Mixed pollutant degradation by Methylosinus trichosporium OB3b expressing either soluble or particulate methane monooxygenase: can the tortoise beat the hare? Appl Environ Microbiol 72:7503–7509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee S-W, Im J, DiSpirito AA, Bodrossy L, Barcelona MJ, Semrau JD (2009) Effect of nutrient and selective inhibitor amendments on methane oxidation, nitrous oxide production, and key gene presence and expression in landfill cover soils: characterization of the role of methanotrophs, nitrifiers, and denitrifiers. Appl Microbiol Biotechnol 85:389–403

    Article  CAS  PubMed  Google Scholar 

  • Levine UY, Teal TK, Robertson GP, Schmidt TM (2011) Agriculture’s impact on microbial diversity and associated fluxes of carbon dioxide and methane. ISME J 5:1683–1691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lichtmannegger J, Leitzinger C, Wimmer R, Schmitt S, Schulz S, Kabiri Y, Eberhagen C, Rieder T, Janik D, Neff F, Straub BK, Schirmacher P, DiSpirito AA, Bandow N, Baral BS, Flately A, Kremmer E, Denk G, Reiter FP, Hohenester S, Eckardt-Schupp F, Dencher NA, Adamski J, Sauer V, Niemietz C, Schmidt HH, Merle U, Gotthardt DN, Kroemer G, Weiss KH, Zischka H (2016) Methanobactin reverses acute liver failure in a rat model of Wilson disease. J Clin Invest 126:2721–2735

    Article  PubMed Central  PubMed  Google Scholar 

  • Lieberman RL, Rosenzweig AC (2005) Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434:177

    Article  CAS  PubMed  Google Scholar 

  • Liebner S, Svenning MM (2013) Environmental transcription of mmoX by methane-oxidizing Proteobacteria in a subarctic palsa peatland. Appl Environ Microbiol 79:701–706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Limbri H, Gunawan C, Thomas T, Smith A, Scott J, Rosche B (2014) Coal-packed methane biofilter for mitigation of greenhouse gas emissions from coal mine ventilation air. PLoS One 9:e94641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Löffler FE, Ritalahti KM, Zinder SH (2013) Dehalococcoides and reductive dechlorination of chlorinated solvents. In: Stroo HF, Leeson A, Ward CH (eds) Bioaugmentation for groundwater remediation. Springer, New York, pp 39–88

    Chapter  Google Scholar 

  • Lontoh S, Semrau JD (1998) Methane and trichloroethylene degradation by Methylosinus trichosporium OB3b expressing particulate methane monooxygenase. Appl Environ Microbiol 64:1106–1114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lontoh S, DiSpirito AA, Semrau JD (1999) Dichloromethane and trichloroethylene inhibition of methane oxidation by the membrane-associated methane monooxygenase of Methylosinus trichosporium OB3b. Arch Microbiol 171:301–308

    Article  CAS  Google Scholar 

  • Lu X, Gu W, Zhao L, Farhan Ul Haque M, DiSpirito AA, Semrau JD, Gu B (2017) Methylmercury uptake and degradation by methanotrophs. Sci Adv 3:e1700041

    Article  PubMed Central  PubMed  Google Scholar 

  • Luesken FA, Sánchez J, van Alen TA, Sanabria J, Op den Camp HJM, Jetten MSM, Kartal B (2011) Simultaneous nitrite-dependent anaerobic methane and ammonium oxidation processes. Appl Environ Microbiol 19:6802–6807

    Article  CAS  Google Scholar 

  • Malghani S, Reim A, von Fischer J, Conrad R, Kuebler K, Trumbore SE (2016) Soil methanotroph abundance and community composition are not influenced by substrate availability in laboratory incubations. Soil Biol Biochem 101:184–194

    Article  CAS  Google Scholar 

  • Matturro B, Presta E, Rossetti S (2016) Reductive dechlorination of tetrachloroethene in marine sediments: biodiversity and dehalorespiring capabilities of the indigenous microbes. Sci Total Environ 545–546:445–452

    Article  CAS  PubMed  Google Scholar 

  • Maxfield PJ, Hornibrook ERC, Evershed RP (2008) Acute impact of agriculture on high-affinity methanotrophic bacterial populations. Environ Microbiol 10:1917–1924

    Article  CAS  PubMed  Google Scholar 

  • Melse RW, van der Werf AW (2005) Biofiltration for mitigation of methane emission from animal husbandry. Environ Sci Technol 39:5460–5468

    Article  CAS  PubMed  Google Scholar 

  • Modin O, Fukushi K, Yamamoto K (2007) Denitrification with methane as external carbon source. Water Res 41:2726–2738

    Article  CAS  PubMed  Google Scholar 

  • Murrell JC, McDonald IR, Gilbert B (2000) Regulation of expression of methane monooxygenases by copper ions. Trend Microbiol 8:221–225

    Article  CAS  Google Scholar 

  • Nikiema J, Bibeau L, Lavoie J, Brzezinski R, Vigneux J, Heitz M (2005) Biofiltration of methane: an experimental study. Chem Eng J 113:111–117

    Article  CAS  Google Scholar 

  • Oldenhuis R, Oedzes JY, van der Waarde JJ, Janssen DB (1991) Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene. Appl Environ Microbiol 57:7–14

    CAS  PubMed Central  PubMed  Google Scholar 

  • Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MS, Birkeland NK, Pol A, Dunfield PF (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1:293–306

    Article  CAS  Google Scholar 

  • Park S, Ely RL (2008) Candidate stress genes of Nitrosomonas europaea for monitoring inhibition of nitrification by heavy metals. Appl Environ Microbiol 74:5475–5482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP, Smith P (2016) Climate-smart soils. Nature 532:49–57

    Article  CAS  PubMed  Google Scholar 

  • Popat SC, Deshusses MA (2009) Reductive dehalogenation of trichloroethene vapors in an anaerobic biotrickling filter. Environ Sci Technol 43:7856–7861

    Article  CAS  PubMed  Google Scholar 

  • Pratscher J, Vollmers J, Wiegand S, Dumont MG, Kaster A-K (2018) Unravelling the identity, metabolic potential and global biogeography of the atmospheric methane-oxidizing upland soil cluster α. Environ Microbiol 20:1016–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratt C, Walcroft AS, Tate KR, Ross DJ, Roy R, Reid MH, Veiga PW (2012) Biofiltration of methane emissions from a dairy farm effluent pond. Agric Ecosyst Environ 152:33–39

    Article  CAS  Google Scholar 

  • Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Sinninghe Damsté JS, Op den Camp HJM, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918

    Article  CAS  PubMed  Google Scholar 

  • Rahman MT, Crombie A, Chen Y, Stralis-Pavese N, Bodrossy L, Meir P, McNamara NP, Murrell JC (2011) Environmental distribution and abundance of the facultative methanotroph Methylocella. ISME J 5:1061–1066

    Article  CAS  PubMed  Google Scholar 

  • Ritalahti KM, Löffler FE, Rasch EE, Koenigsberg SS (2005) Bioaugmentation for chlorinated ethene detoxification: bioaugmentation and molecular diagnostics in the bioremediation of chlorinated ethene-contaminated sites. Ind Biotechnol 1:114–118

    Article  CAS  Google Scholar 

  • Ryals R, Hartman MD, Parton WJ, DeLonge MS, Silver WL (2015) Long-term climate change mitigation potential with organic matter management on grasslands. Ecol Appl 25:531–545

    Article  PubMed  Google Scholar 

  • Scheutz C, Kjeldsen P, Bogner JE, De Visscher A, Gebert J, Hilger HA, Huber-Humer M, Spokas K (2009) Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manage Res 27:409–455

    Article  CAS  Google Scholar 

  • Semprini L, McCarty PL (1991) Comparison between model simulations and field results for in-situ biorestoration of chlorinated aliphatics: Part 1. Biostimulation of methanotrophic bacteria. Groundwater 29:365–374

    Article  CAS  Google Scholar 

  • Semrau J (2011) Bioremediation via methanotrophy: overview of recent findings and suggestions for future research. Front Microbiol 2:209

    Article  PubMed Central  PubMed  Google Scholar 

  • Semrau J, DiSpirito A, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531

    Article  CAS  PubMed  Google Scholar 

  • Sengupta A, Dick WA (2015) Bacterial community diversity in soil under two tillage practices as determined by pyrosequencing. Microbial Ecol 70:853–859

    Article  Google Scholar 

  • Shi Y, Hu S, Lou J, Lu P, Keller J, Yuan Z (2013) Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor. Environ Sci Technol 47:11577–11583

    Article  CAS  PubMed  Google Scholar 

  • Singh JS, Strong PJ (2016) Biologically derived fertilizer: a multifaceted bio-tool in methane mitigation. Ecotoxicol Environ Saf 124:267–276

    Article  CAS  PubMed  Google Scholar 

  • Streese J, Stegmann R (2003) Microbial oxidation of methane from old landfills in biofilters. Waste Manage 23:573–580

    Article  CAS  Google Scholar 

  • Strong P, Laycock B, Mahamud S, Jensen P, Lant P, Tyson G, Pratt S (2016) The opportunity for high-performance biomaterials from methane. Microorganisms 4:11

    Article  PubMed Central  CAS  Google Scholar 

  • Svenning MM, Wartiainen I, Hestnes AG, Binnerup SJ (2003) Isolation of methane oxidising bacteria from soil by use of a soil substrate membrane system. FEMS Microbiol Ecol 44:347–354

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi M, Nanba K, Iwamoto H, Nirei H, Kusuda T, Kazaoka O, Owaki M, Furuya K (2005) In situ bioremediation of a cis-dichloroethylene-contaminated aquifer utilizing methane-rich groundwater from an uncontaminated aquifer. Water Res 39:2438–2444

    Article  CAS  PubMed  Google Scholar 

  • Tate KR (2015) Soil methane oxidation and land-use change – from process to mitigation. Soil Biol Biochem 80:260–272

    Article  CAS  Google Scholar 

  • Taylor RT, Hanna ML, Shah NN, Shonnard DR, Duba AG, Durham WB, Jackson KJ, Knapp RB, Wijesinghe AM, Knezovich JP, Jovanovich MC (1993) In situ bioremediation of trichloroethylene-contaminated water by a resting-cell methanotrophic microbial filter. Hydrol Sci J 38:323–342

    Article  CAS  Google Scholar 

  • Tubiello FN, Salvatore M, Ferrara AF, House J, Federici S, Rossi S, Biancalani R, Condor Golec RD, Jacobs H, Flammini A, Prosperi P, Gardenas-Galindo P, Schmidhuber J, Sanz Sanchez MJ, Srivastava N, Smith P (2015) The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob Chang Biol 21:2655–2660

    Article  PubMed  Google Scholar 

  • van der Ha D, Nachtergaele L, Kerckhof F-M, Rameiyanti D, Bossier P, Verstraete W, Boon N (2012) Conversion of biogas to bioproducts by algae and methane oxidizing bacteria. Environ Sci Technol 46:13425–13431

    Article  CAS  PubMed  Google Scholar 

  • van Hylckama Vlieg JET, de Koning W, Janssen DB (1996) Transformation kinetics of chlroinated ethenes by Methylosinus trichosporium OB3b and detection of unstable epoxides by on-line gas chromatography. Appl Environ Microbiol 62:3304–3312

    Google Scholar 

  • van Hylckama Vlieg JET, Janssen DB (2001) Formation and detoxification of reactive intermediates in the metabolism of chlorinated ethenes. J Biotechnol 85:81–102

    Article  PubMed  Google Scholar 

  • van Kessel MAHJ, Stultiens K, Slegers MFW, Guerrero Cruz S, Jetten MSM, Kartal B, Op den Camp HJM (2018) Current perspectives on the application of N-damo and anammox in wastewater treatment. Curr Opin Biotechnol 50:222–227

    Article  CAS  PubMed  Google Scholar 

  • Veraart AJ, Garbeva P, van Beersum F, Ho A, Hordijk CA, Meima-Franke M, Zweers AJ, Bodelier PLE (2018) Living apart together – bacterial volatiles influence methanotrophic growth and activity. ISME J 12:1163–1166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vorobev A, Jagadevan S, Baral BS, DiSpirito AA, Freemeier BC, Bergman BH, Bandow NL, Semrau JD (2013) Detoxification of mercury by methanobactin from Methylosinus trichosporium OB3b. Appl Environ Microbiol 79:5918–5926

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wendlandt K-D, Stottmeister U, Helm J, Soltmann B, Jechorek M, Beck M (2010) The potential of methane-oxidizing bacteria for applications in environmental biotechnology. Eng Life Sci 10:87–102

    CAS  Google Scholar 

  • Wu YM, Yang J, Fan XL, Fu SF, Sun MT, Guo RB (2017) Elimination of methane in exhaust gas from biogas upgrading process by immobilized methane-oxidizing bacteria. Bioresour Technol 231:124–128

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki S, Koyama J, Miyake H (2014) Inventors; Semiconductor Energy Laboratory Co., Ltd., assignee. Semiconductor device having an oxide semiconductor with a crystalline region and manufacturing method thereof. United States patent US 8,633,480 B2

    Google Scholar 

  • Yang Y, Cápiro NL, Yan J, Marcet TF, Pennell KD, Löffler FE (2017a) Resilience and recovery of Dehalococcoides mccartyi following low pH exposure. FEMS Microbiol Ecol 93:fix130

    Google Scholar 

  • Yang Y, Higgins SA, Yan J, Simsir B, Chourey K, Iyer R, Hettich RL, Baldwin B, Oqles DM, Löffler FE (2017b) Grape pomace compost harbors organohalide-respiring Dehalogenimonas species with novel reductive dehalogenase genes. ISME J 11:2767–2780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoon S, Semrau JD (2008) Measurement and modeling of multiple substrate oxidation by methanotrophs at 20 °C. FEMS Microbiol Lett 287:156–162

    Article  CAS  PubMed  Google Scholar 

  • Yoon S, Carey J, Semrau J (2009) Feasibility of atmospheric methane removal using methanotrophic biotrickling filters. Appl Microbiol Biotechnol 83:949–956

    Article  CAS  PubMed  Google Scholar 

  • Zahn JA, DiSpirito AA (1996) Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath). J Bacteriol 178:1018–1029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zakirov V, Sweeting M, Lawrence T, Sellers J (2001) Nitrous oxide as a rocket propellant. Acta Astronaut 48:353–362

    Article  Google Scholar 

  • Zhu J, Wang Q, Yuan M, Tan G-YA, Sun F, Wang C, Wu W, Lee PH (2016) Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: a review. Water Res 90:203–215

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the C1 Gas Refinery Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Science, ICT and Future Planning (grant number: NRF-2015-M3D3A1A01064881) and the Deutsche Forschungsgemeinschaft (grant number: HO6234/1-1) and the Leibniz Universität Hannover.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhwan Yoon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ho, A., Kwon, M., Horn, M.A., Yoon, S. (2019). Environmental Applications of Methanotrophs. In: Lee, E. (eds) Methanotrophs. Microbiology Monographs, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-23261-0_8

Download citation

Publish with us

Policies and ethics