Skip to main content

Methanobactin: A Novel Copper-Binding Compound Produced by Methanotrophs

  • Chapter
  • First Online:
Methanotrophs

Part of the book series: Microbiology Monographs ((MICROMONO,volume 32))

Abstract

Aerobic methanotrophs are a novel group of microorganisms that play a critical role in the global carbon cycle . Expression and activity of a key enzyme in the metabolism in these microbes , the methane monooxygenase , is controlled by the availability of copper . To sequester copper , some methanotrophs produce a ribosomally synthesized post-translationally modified polypeptide called methanobactin . This peptide , or chalkophore , has unique features, with all known forms being small (<1300 Da) with two heterocyclic rings with associated thioamide groups that bind copper quite strongly. Here we provide an overview of the known diversity of methanobactins , describe the genetics underlying the methanobactin biosynthesis , the variety of functions methanobactin has been observed to have, as well as various environmental, industrial and medical applications of methanobactin .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ala A, Walker AP, Ashkan A, Dooley JS, Schilsky M (2007) Wilson’s disease. Lancet 369:397–408

    Article  CAS  PubMed  Google Scholar 

  • Anttila J, Petri Heinonen P, Nenonen T, Pino A, Iwaï H, Kauppi E, Soliymani R, Baumann M, Saksi J, Suni N, Haltia T (2011) Is coproporphyrin III a copper-acquisition compound in Paracoccus denitrificans? Biochim Biophys Acta 1807:311–318

    Article  CAS  PubMed  Google Scholar 

  • Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian K-D, Fischbach MA, Gravelli JS, Goransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kiuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore B, Muller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJT, Rubuffat S, Ross RP, Sthl H-G, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Sussmuth RD, Tagg JR, Tang G-L, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenz SC, Willey JM, van der Donk WA (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for universal nomenclature. Nat Prod Rep 30:108–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balasubramanian R, Smith S, Rawat S, Yatsunyk LA, Stemmier TL, Rosenzweig AC (2010) Oxidation of methane by a biological dicopper centre. Nature 465:115–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballard C, Gauthier S, Cobett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377:1019–1031

    Article  PubMed  Google Scholar 

  • Banerjee R, Meier KK, Munck C, Lipscomb JD (2013) Intermediate P∗ from soluble methane monooxygenase contains a diferrous cluster. Biochemistry 52(25):4331–4342

    Article  CAS  PubMed  Google Scholar 

  • Banerjee R, Proshlyakov Y, Lipscomb JD, Proshlyakov DA (2015) Structure of the key species in the enzymatic oxidation of methane to methanol. Nature 518:431–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baral BS, Bandow NL, Vorobev A, Freemeier BC, Bergman BH, Herdendorf T, Fuentes N, Ellias L, Turpin E, Semrau JD, DiSpirito AA (2014) Mercury binding by methanobactin from Methylocystis strain SB2. J Inorg Biochem 141:161–169

    Article  CAS  PubMed  Google Scholar 

  • Barkay T, Wagner-Döbler I (2005) Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment. Adv Appl Microbiol 57:1–52

    Article  CAS  PubMed  Google Scholar 

  • Basle A, El Ghazouani A, Lee J, Dennison C (2018) Insight into metal removal from peptides that sequester copper for methane oxidation. Chemistry 24(18):4515–4518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu P, Katterle B, Andersson KK, Dalton H (2003) The membrane-associated form of methane mono-oxygenase from Methylococcus capsulatus (Bath) is a copper/iron protein. Biochem J 369:417–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behling LA, Hartsel SC, Lewis DE, DiSpirito AA, Choi DW, Masterson LR, Veglia G, Gallagher WH (2008) NMR, mass spectrometry and chemical evidence reveal a different chemical structure for methanobactin that contains oxazolone rings. J Am Chem Soc 130(38):12604–12605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bishop GR, Davidson VL (1998) Electron transfer from the aminosemiquinone reaction intermediate of methylamine dehydrogenase to amicyanin. Biochemistry 37(31):11026–11032

    Article  CAS  PubMed  Google Scholar 

  • Bishop GR, Brooks HB, Davidson VL (1996) Evidence for a tryptophan tryptophylquione aminosemiquione intermediate in the physologic reaction between methylamine dehydrogenase and amicyanin. Biochemistry 35:8948–8954

    Article  CAS  PubMed  Google Scholar 

  • Bossy-Wetzel E, Schwarzenbacher R, Lipton SA (2004) Molecular pathways to neurodegeneration. Nat Med 10:S2–S9. https://doi.org/10.1038/nm1067

    Article  CAS  PubMed  Google Scholar 

  • Brady DC, Crowe MS, Turski ML, Hobbs GA, Yao X, Chaikuad A, Knapp S, Xio K, Cambell SL, Thiele DJ, Counter CM (2014) Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature 509:492–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brantner CA, Buchholz LA, McSwain CL, Newcomb LL, Remsen CC, Collins MLP (1997) Intracytoplasmic membrane formation in Methylomicrobium album BG8 is stimulated by copper in the growth medium. Can J Microbiol 43(7):672–676

    Article  CAS  Google Scholar 

  • Brewer GJ (2014) Alzheimer’s disease causation by copper toxicity and treatment with zinc. Front Aging Neurosci 6:92

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown K, Tegoni M, Prudêncio M, Pereira AS, Besson S, Moura JJ, Moura I, Cambillau C (2000) A novel type of catalytic copper cluster in nitrous oxide reductase. Nat Struct Mol Biol 7(3):191–195

    Article  CAS  Google Scholar 

  • Bush AI (2008) Drug development based on metals hypothesis of Alzheimer’s disease. J Alzheimers Dis 15(2):223–240

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Calkarau O, Rosenzweig AC, Ryde U (2018) Quantum refinement does not support dinuclear copper sites in crystal structures of particular methane monooxygenase. Angew Chem 130:168–172

    Article  Google Scholar 

  • Chan SI, Wang VCC, Lai JCH, Yu SSF, Chen PPY, Chen KHC, Chen CL, Chan MK (2007) Redox potentiometry studies of particulate methane monooxygenase: support for a trinuclear copper cluster active site. Angew Chem Int Ed 46(12):1992–1994

    Article  CAS  Google Scholar 

  • Chang SL, Wallar BJ, Lipscomb JD, Mayo KH (1999) Solution structure of component B from methane monooxygenase derived through heteronuclear NMR and molecular modeling. Biochemistry 38:5799–5812

    Article  CAS  PubMed  Google Scholar 

  • Chang J, Gu W, Park D, Semrau JD, DiSpirito AA, Yoon S (2018) Methanobactin from Methylosinus trichosporium OB3b inhibits N2O reduction in denitrifiers. ISME J 12:2086–2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaturvedi KS, Hung CS, Crowley JR, Stapleton AE, Henderson JP (2012) The siderophore yersiniabactin binding copper to protect pathogens during infections. Nat Chem Biol 8(8):731–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherny R, Atwood CS, Xilinas ME, Gray DN, Jones WDM, McLean CA, Barnham KJ, Volitakis I, Fraser FW, Kim Y-S, Huang X, Goldstein LE, Moir RD, Lim JT, Beyreuther K, Zheng H, Tanzi RE, Masters CL, Bush A (2001) Treatment with copper-zinc chelator markedly and rapidly inhibits B-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30:665–676

    Article  CAS  PubMed  Google Scholar 

  • Choi DW, Kunz RC, Boyd ES, Semrau JD, Antholine WE, Han JI, Zahn JA, Boyd JM, de la Mora AM, DiSpirito AA (2003) The membrane-associated methane monooxygenase (pMMO) and pMMO-NADH:quinone oxidoreductase complex from Methylococcus capsulatus Bath. J Bacteriol 185(19):5755–5764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi DW, Antholine WE, Do YS, Semrau JD, Kisting CJ, Kunz RC, Campbell D, Rao V, Hartsel SC, DiSpirito AA (2005) Effect of methanobactin on the activity and electron paramagnetic resonance spectra of the membrane-associated methane monooxygenase in Methylococcus capsulatus Bath. Microbiology 151(Pt 10):3417–3426

    Article  CAS  PubMed  Google Scholar 

  • Choi DW, Do YS, Zea CJ, McEllistrem MT, Lee SW, Semrau JD, Pohl NL, Kisting CJ, Scardino LL, Hartsel SC, Boyd ES, Geesey GG, Riedel TP, Shafe PH, Kranski KA, Tritsch JR, Antholine WE, DiSpirito AA (2006) Spectral and thermodynamic properties of Ag(I), Au(III), Cd(II), Co(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(IV), and Zn(II) binding by methanobactin from Methylosinus trichosporium OB3b. J Inorg Biochem 100(12):2150–2161

    Article  CAS  PubMed  Google Scholar 

  • Choi DW, Semrau JD, Antholine WE, Hartsel SC, Anderson RC, Carey JN, Dreis AM, Kenseth EM, Renstrom JM, Scardino LL, Van Gorden GS, Volkert AA, Wingad AD, Yanzer PJ, McEllistrem MT, de la Mora AM, DiSpirito AA (2008) Oxidase, superoxide dismutase, and hydrogen peroxide reductase activities of methanobactin from types I and II methanotrophs. J Inorg Biochem 102(8):1571–1580

    Article  CAS  PubMed  Google Scholar 

  • Choi DW, Bandow NL, McEllistrem MT, Semrau JD, Antholine WE, Hartsel SC, Gallagher W, Zea CJ, Pohl NL, Zahn JA, DiSpirito AA (2010) Spectral and thermodynamic properties of methanobactin from γ-proteobacterial methane oxidizing bacteria: a case for copper competition on a molecular level. J Inorg Biochem 104(12):1240–1247

    Article  CAS  PubMed  Google Scholar 

  • Colby J, Dalton H (1976) Some properties of a soluble methane mono-oxygenase from Methylococcus capsulatus strain Bath. Biochem J 157:495–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colby J, Dalton H (1978) Resolution of the methane monooxygenase of Methylococcus capsulatus (Bath) into three components. Purification and properties of component C, a flavoprotein. Biochem J 171:461–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colby J, Dalton H (1979) Characterization of the second prosthetic group of the flavoprotein NADH-acceptor reductase (component C) of the methane monooxygenase from Methylococcus capsulatus (Bath). Biochem J 177:903–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman NV, Le NB, Ly MA, Ogawa HE, McCarl V, Wilson NL, Holmes AJ (2012) Hydrocarbon monooxygenase in Mycobacterium: recombinant expression of a member of the ammonia monooxygenase superfamly. ISME J 6:171–182

    Article  CAS  PubMed  Google Scholar 

  • Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt DD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3):325–327

    Article  CAS  PubMed  Google Scholar 

  • Culpepper MA, Cutsail GEI, Gunderson WA, Hoffman BM, Rosenzweig AC (2014) Identification of the valence and coordination environment of the particulate methane monooxygenase copper centers by advanced EPR characterization. J Am Chem Soc 136(33):11767–11775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalton H, Prior SD, Leak DJ, Stanley SH (1984) Regulation and control of methane monooxygenase. In: Crawford RL, Hanson RS (eds) Microbial growth in C1 compounds. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Dalyl A, Padmanaban M (2014) Wilson’s disease: etiology, diagnosis, and treatment. Dis Mon 60:450–459

    Article  Google Scholar 

  • Davidson VL (2001) Pyrroloquinoline quinone (PQQ) from methanol dehydrogenase and tryptophan trypophyloquione (TTQ) from methylamine dehydrogenase. Adv Protein Chem 58:95–140

    Article  CAS  PubMed  Google Scholar 

  • Davidson VL (2005) Structure and mechanism of tryptophyloquione enzymes. Bioorg Chem 33:159–170

    Article  CAS  PubMed  Google Scholar 

  • Davies KM, Bohic S, Carmona A, Ortega R, Cottam V, Hare DJ, Finberg JPM, Reyes S, Halliday GM, Mercer JFB, Double KL (2014) Copper pathology in vulnerable brain regions in Parkinson’s disease. Neurobiol Aging 35:858–866

    Article  CAS  PubMed  Google Scholar 

  • de Bie P, Muller P, Wijmenga C, Klomp LWJ (2007) Molecular pathogenesis of Wilson and Menkes disease: correlation of mutations with molecular defects and disease phenotypes. J Med Genet 44:678–688

    Google Scholar 

  • Dedysh SN, Knief C, Dunfield PF (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187:4665–4670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeWitt JG, Bentsen JG, Rosenzweig AC, Hedman B, Green J, Pilkington S, Papaefthymiou GC, Dalton H, Hodgson KO, Lippard SJ (1991) X-ray absorption, Mossbauer, and EPR studies of the dinuclear iron center in the hydroxylase component of methane monooxygenase. Am J Chem Soc 113:9219–9235

    Article  CAS  Google Scholar 

  • DiSpirito AA, Zahn JA, Graham DW, Kim HJ, Larive CK, Derrick TS, Cox CD, Taylor A (1998) Copper-binding compounds from Methylosinus trichosporium OB3b. J Bacteriol 180(14):3606–3613

    CAS  PubMed  PubMed Central  Google Scholar 

  • DiSpirito AA, Zahn JA, Graham DW, Kim HJ, Alterman M, Larive C (2004) Methanobactin: a copper binding compound having antibiotic and antioxidant activity from methanotropic bacteria. US Patent No. 7,199,099. United States Patent and Trademark Office, Washington, DC

    Google Scholar 

  • DiSpirito AA, Choi D-W, Semrau JD, Keeney D (2011) Use of methanobactin. In: United States Patent Office (ed) The regents of the University of Michigan and Iowa State University Research Foundation

    Google Scholar 

  • DiSpirito AA, Choi D-W, Semrau JD, Keeney D (2014) Use of methanobactin. In: United States Patent Office (ed) Iowa State University Research Foundation and Regents of the University of Michigan

    Google Scholar 

  • DiSpirito AA, Semrau JD, Murrell JC, Gallagher WH, Dennison C, Vuilleumier S (2016) Methanobactin and the link between copper and bacterial methane oxidation. Microbiol Mol Biol Rev 80(2):387–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunfield PF, Dedysh SN (2014) Methylocella: a gourmand among methanotrophs. Trends Microbiol 22(7):368–369

    Article  CAS  PubMed  Google Scholar 

  • Dunfield PF, Belova SE, Vorob’ev AV, Cornish SL, Dedysh SN (2010) Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa. Int J Syst Evol Microbiol 60:2659–2664

    Article  CAS  PubMed  Google Scholar 

  • Dusek P, Roos PM, Litwin T, Schneider SA, Flaten TP, Aaseth J (2014) The neurotoxicity of iron, copper and manganese in Parkinson’s and Wilson’s diseases. J Trace Elem Med Biol 31:193–203

    Article  PubMed  CAS  Google Scholar 

  • Einer C, Leitzinger C, Lichtmannegger J, Eberhagen C, Rieder T, Borchard S, Wimmer R, Denk G, Popper B, Neff F, Polishchuk EV, Polishchuk RS, Hauck SM, von Toerne C, Karst U, Mullert J-C, Baral BS, DiSpirito AA, Kremer AE, Semrau JD, Weiss KH, Hohenester S, Zischka H (2019) A high caloric diet augments mitochondrial disfunction and triggers severe liver damage in Wilson disease rats. J Hepatol 7(3):571–596

    Google Scholar 

  • El Ghazouani A, Basle A, Firbank SJ, Knapp CW, Gray J, Graham DW, Dennison C (2011) Copper-binding properties and structures of methanobactins from Methylosinus trichosporium OB3b. Inorg Chem 50(4):1378–1391

    Article  PubMed  CAS  Google Scholar 

  • El Ghazouani A, Baslé A, Gray J, Graham DW, Firbank SJ, Dennison C (2012) Variations in methanobactin structure influences copper utilization by methane-oxidizing bacteria. Proc Natl Acad Sci USA 109(22):8400–8404

    Article  PubMed  PubMed Central  Google Scholar 

  • Elango N, Radhakrishnan R, Froland WA, Wallar BJ, Earhart CA, Lipscomb JD, Ohlendorf DH (1997) Crystal structure of the hydroxylase component of methane monooxygenase from Methylosinus trichosporium OB3b. Protein Sci 6:556–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fentona R, Chemizmu KD (2009) Fenton reaction-controversy concerning the chemistry. Ecol Chem Engin 16(3):347–358

    Google Scholar 

  • Fitch MW, Graham DW, Arnold RG, Agarwal SK, Phelps P, Speitel GE, Georgiou G (1993) Phenotypic characterization of copper-resistant mutants of Methylosinus trichosporium Ob3b. Appl Environ Microbiol 59(9):2771–2776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fontecave M, Menage S, Duboc-Toia C (1998) Functional models of non-heme diiron enzymes. Coord Chem Rev 178–180:1555–1572

    Article  Google Scholar 

  • Fox BG, Lipscomb JD (1988) Purification of a high specific activity methane monooxygenase hydroxylase component from a type II methanotroph. Biochem Biophys Res Commun 154:165–170

    Article  CAS  PubMed  Google Scholar 

  • Fox BG, Surerus KK, Münck E, Lipscomb JD (1988) Evidence for a mu-oxo-bridged binuclear iron cluster in the hydroxylase component of methane monooxygenase – Mössbauer and electron-paramagnetic-resonance studies. J Biol Chem 263(22):10553–10556

    CAS  PubMed  Google Scholar 

  • Fox BG, Froland WA, Dege JE, Lipscomb JD (1989) Methane monooxygenase from Methylosinus trichosporium Ob3b – purification and properties of a 3-component system with high specific activity from a type-II methanotroph. J Biol Chem 264(17):10023–10033

    CAS  PubMed  Google Scholar 

  • Fox BG, Liu Y-N, Dege JE, Lipscomb JD (1991) Complex formation between the protein components of the methane monooxygenase from Methylosinus trichosporium OB3b. J Biol Chem 266:540–550

    CAS  PubMed  Google Scholar 

  • Fox BG, Hendrich MP, Surerus KK, Andersson KK, Froland WA, Lipscomb JD, Münck E (1993) Mössbauer, EPR, and ENDOR studies of the hydroxylase and reductase components of methane monooxygenase from Methylosinus trichosporium Ob3b. J Am Chem Soc 115(9):3688–3701

    Article  CAS  Google Scholar 

  • Fridovick I (1978) The biology of oxygen radicals. Science 201(4359):875–880

    Article  Google Scholar 

  • Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (Alzheimer’s, Prion, and Parkinson’s diseases and amyotrophic lateral sclerosisa). Chem Rev 106:1995–2044

    Article  CAS  PubMed  Google Scholar 

  • Gamez P, Caballero AB (2015) Copper in Alzheimer’s disease: implications in amyloid aggregation and neurotoxicity. AIP Adv 5:092503

    Article  CAS  Google Scholar 

  • Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315

    Article  CAS  PubMed  Google Scholar 

  • Gilch S, Vogel M, Lorenz MW, Meyer O, Schmidt I (2009) Interaction of the mechanism-based inactivator acetylene with ammonia monooxygenase of Nitrosomonas europaea. Microbiology 155:279–284

    Article  CAS  PubMed  Google Scholar 

  • Gitlin JD (2003) Wilson disease. Gastroenterology 125(6):1868–1877

    Article  PubMed  Google Scholar 

  • Green J, Dalton H (1985) Protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath). A novel regulatory protein of enzyme activity. J Biol Chem 260(29):15795–15801

    CAS  PubMed  Google Scholar 

  • Gu W, Farhan U-HM, Baral BS, Turpin EA, Bandow NL, DiSpirito AA, Lichtmannegger J, Kremmer E, Zischka H, Semaru JD (2016) A TonB dependent transporter is responsible for methanobactin uptake by Methylosinus trichosporium OB3b. Appl Environ Microbiol 82:1917–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu W, Baral BS, DiSpirito AA, Semrau JD (2017) An aminotransferase is responsible for the deamination of the N-terminal leucine and required for formation of oxazolone ring A in Methanobactin of Methylosinus trichosporium OB3b. Appl Environ Microbiol 82:e01619-01616

    Google Scholar 

  • Guo S, Wang E (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598:181–192

    Article  CAS  PubMed  Google Scholar 

  • Hakemian AS, Rosenzweig AC (2007) The biochemistry of methane oxidation. Annu Rev Biochem 76:223–241

    Article  CAS  PubMed  Google Scholar 

  • Hakemian AS, Kondapalli KC, Telser J, Hoffman BM, Stemmler TL, Rosenzweig AC (2008) The metal centers of particulate methane monooxygenase from Methylosinus trichosporium OB3b. Biochemistry 47(26):6793–6801

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Atwood CS, Moir RD, Hartshorn MA, Tanzi RE, Bush AL (2004) Trace metal contamnation initiates the apparent auto-aggregation, amyloidosis, and oligomerization of Alzheimer’s Aβ peptides. J Biol Inorg Chem 9:954–960

    Article  CAS  PubMed  Google Scholar 

  • Hyman MR, Arp DJ (1990) The small-scale production o [U-14C]acetylene rom Ba14CO3: application to labeling of ammonia monooxygenase in autotrophic nitrifying acteria. Anal Biochem 190:348–353

    Google Scholar 

  • Hyman MR, Arp DJ (1992) 14C2H2- and 14CO2-labeling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase. J Biol Chem 267:1534–1545

    CAS  PubMed  Google Scholar 

  • Hynes RK, Knowles R (1978) Inhibition by acetylene of ammonia oxidation in Nitrosomonas europaea. FEMS Microbiol Lett 4:319–321

    Article  CAS  Google Scholar 

  • Jeffery CJ (1999) Moonlighting proteins. Trends Biochem Sci 24(1):8–11

    Article  CAS  PubMed  Google Scholar 

  • Jeffery CJ (2003) Moonlighting proteins: old proteins learning new tricks. Trends Genet 19(8):415–417

    Article  CAS  PubMed  Google Scholar 

  • Jeffery CJ (2009) Moonlighting proteins – an update. Mol Biosyst 5(4):345–350

    Article  CAS  PubMed  Google Scholar 

  • Johnson CL (2006) Methanobactin: a potential novel biopreservative used against the foodborne pathogen Listeria monocytogenes. Iowa State University

    Google Scholar 

  • Kalidass B, Ul-Haque MF, Baral BS, DiSpirito AA, Semrau JD (2015) Competition between metals for binding to methanobactin enables expression of soluble methane monooxygenase in the presence of copper. Appl Environ Microbiol 81(3):1024–1031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kehrer JP (2000) The Harber-Weiss reaction mechanisms of toxicity. Toxicology 149(1):43–50

    Article  CAS  PubMed  Google Scholar 

  • Kenney GE, Rosenzweig AC (2012) Chemistry and biology of the copper chelator methanobactin. ACS Chem Biol 7:260–268

    Article  CAS  PubMed  Google Scholar 

  • Kenney GE, Rosenzweig AC (2013) Genome mining for methanobactins. BMC Biol 11:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenney GE, Rosenzweig AC (2018) Chalkophores. Annu Rev Biochem 87:645–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenney GE, Goering AW, Ross MO, Dehart CJ, Thomas PM, Hoffman BM, Kelleher NL, Rosenzweig AC (2016) Characterization of methanobactin from Methylosinus sp. LW4. J Am Chem Soc 138(35):11124–11127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenney GE, Dassama LMK, Pandelia ME, Gizzi AS, Martinie RJ, Gao P, DeHart CJ, Schachner LF, Skinner OS, Ro SY, Zhu X, Sadek M, Thomas PM, Almo SC, Bollinger JM Jr, Krebs C, Kelleher NL, Rosenzweig AC (2018) The biosynthesis of methanobactin. Science 359(6382):1411–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Graham DW, DiSpirito AA, Alterman MA, Galeva N, Larive CK, Asunskis D, Sherwood PMA (2004) Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria. Science 305(5690):1612–1615

    Article  CAS  PubMed  Google Scholar 

  • Koh E-I, Robinson A, Bandara N, Rogers B, Henderson JP (2017) Copper import in Escherichia coli by the yersiniabactin metallophore system. Nat Chem Biol 13:1016–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krentz BD, Mulheron HJ, Semrau JD, DiSpirito AA, Bandow NL, Haft DH, Vuilleumier S, Murrell JC, McEllistrem MT, Hartsel SC, Gallagher WH (2010) A comparison of methanobactins from Methylosinus trichosporium OB3b and Methylocystis strain SB2 predicts methanobactins are synthesized from diverse peptide precursors modified to create a common core for binding and reducing copper ions. Biochemistry 49(47):10117–10130

    Article  CAS  PubMed  Google Scholar 

  • Lawton TJ, Rosenzweig AC (2017) Biocatalysis for methane conversion: big progress on breaking a small substrate. Curr Opin Chem Biol 35:142–149

    Article  CAS  Google Scholar 

  • Leak DJ, Dalton H (1986) Growth yields of methanotrophs 2. A theoretical analysis. Appl Microbiol Biotechnol 23(6):477–481

    Article  CAS  Google Scholar 

  • Lee SK, Fox BG, Froland WA, Lipscomb JD, Münck E (1993a) A transient intermediate of the methane monooxygenase catalytic cycle containing a FeIVFeIV cluster. J Am Chem Soc 115:6450–6451

    Article  CAS  Google Scholar 

  • Lee SK, Nesheim JC, Lipscomb JD (1993b) Transient intermediates of the methane monooxygenase catalytic cycle. J Biol Chem 268:21569–21577

    CAS  PubMed  Google Scholar 

  • Lichmannegger J, Leitinger C, Winner R, Schmitt S, Schulz S, Kabiri Y, Eberhagen C, Rieder T, Janik D, Neff F, Aichler M, DiSpirito AA, Bandow NL, Baral BS, Flatler A, Kremmer E, Denk G, Hohenester S, Eckardt-Schupp F, Dencher N, Adamski J, Merle U, Gotthardt DN, Kroemer G, Weiss KH, Zischka H (2016) Methanobactin: a new effective treatment strategy against acute liver failure in a Wilson disease rat model. J Clin Invest 126:2721–2735

    Article  Google Scholar 

  • Lieberman RL, Rosenzweig AC (2005) Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434(7030):177–182

    Article  CAS  PubMed  Google Scholar 

  • Lieberman RL, Shrestha DB, Doan PE, Hoffman BM, Stemmler TL, Rosenzweig AC (2003) Purified particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a dimer with both mononuclear copper and a copper-containing cluster. Proc Natl Acad Sci USA 100(7):3820–3825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieberman RL, Kondapalli KC, Shrestha DB, Hakemian AS, Smith SM, Telser J, Kuzelka J, Gupta R, Borovik AS, Lippard SJ, Hoffman BM, Rosenzweig AC, Stemmler TL (2006) Characterization of the particulate methane monooxygenase metal centers in multiple redox states by X-ray absorption spectroscopy. Inorg Chem 45(20):8372–8381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipscomb JD (1994) Biochemistry of the soluble methane monooxygenase. Annu Rev Microbiol 48:371–399

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Gu W, Zhao L, Fagan UHM, DiSpirito AA, Semrau JD, Gu B (2017) Methylmercury uptake and degradation by methanotrophs. Sci Adv 3:e1700041

    Article  PubMed  PubMed Central  Google Scholar 

  • Maeda M, Zhao B, Ozaki Y, Yoneyama T (2003) Nitrate leaching in an Andisol treated with different types of fertilizers. Environ Pollut 121(3):477–487

    Article  CAS  PubMed  Google Scholar 

  • Mandal S, Phadtare S, Sastry M (2005) Interfacing biology with nanoparticles. Curr Appl Phys 5:118–127

    Article  Google Scholar 

  • Martinho M, Choi DW, Dispirito AA, Antholine WE, Semrau JD, Münck E (2007) Mössbauer studies of the membrane-associated methane monooxygenase from Methylococcus capsulatus Bath: evidence for a Diiron center. J Am Chem Soc 129(51):15783–15785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller LM, Wang Q, Telivala TP, Smith RJ, Lanzirotti A, Miklossy J (2006) Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized within β-amyloid deposites in Alzheimer’s disease. J Struct Biol 155:30–36

    Article  CAS  PubMed  Google Scholar 

  • Moffett JW, Tuit CB, Ward BB (2012) Chelator-induced inhibition of copper metalloenzymes in denitrifying bacteria. Limnol Oceanogr 57(1):272–280

    Article  CAS  Google Scholar 

  • Mullert J-C, Lichtmannegger J, Zischka H, Sperling M, Karst U (2018) High spatial resolution of LA-ICP-MS demonstrates massive liver copper depletion in Wilson disease rats upon methanobactin treatmenty. J Trace Elem Med Biol 49:119–127

    Article  CAS  Google Scholar 

  • Murrell JC, McDonald IR, Gilbert B (2000) Regulation of expression of methane monooxygenases by copper ions. Trends Microbiol 8(5):221–225

    Article  CAS  PubMed  Google Scholar 

  • Myronova N, Kitmitto A, Collins RF, Miyaji A, Dalton H (2006) Three-dimensional structure determination of a protein supercomplex that oxidizes methane to formaldehyde in Methylococcus capsulatus (Bath). Biochemistry 45(39):11905–11914

    Article  CAS  PubMed  Google Scholar 

  • Neilands JB (1995) Siderophores – structure and function of microbial iron transport compounds. J Biol Chem 270(45):26723–26726

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HHT, Elliott SJ, Yip JHK, Chan SI (1998) The particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme – isolation and characterization. J Biol Chem 273(14):7957–7966

    Article  CAS  PubMed  Google Scholar 

  • Nieboer E, Richardson DHS (1980) The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions. Environ Pollut B 1(1):3–26

    Article  CAS  Google Scholar 

  • Pelludat C, Rakin A, Jacobi CA, Schubert S, Heesemann J (1998) The Yersiniabactin biosynthetic gene cluster of Yersinia enterocolitia: organization and siderophore-dependent regulation. J Bacteriol 180(3):538–546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phelps PA, Agarwal SK, Speitel GE, Georgiou G (1992) Methylosinus trichosporium OB3b mutants having constitutive epression of soluble methane monooxygenase in the presence of high-levels of copper. Appl Environ Microbiol 58(11):3701–3708

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polte J, Ahner TT, Delissen F, Sokolov S, Emmerling F, Thunemann AF, Kraehnert R (2010) Mecahnism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J Am Chem Scc 132:1296–1301

    Article  CAS  Google Scholar 

  • Prior SD, Dalton H (1985) Acetylene as a suicide substrate and active site probe for methane monooxygenase from Methylococcus capsulatus (Bath). FEMS Microbiol Lett 29:105–109

    Article  CAS  Google Scholar 

  • Reim A, Luke C, Krause S, Pratscher J, Frenzel P (2012) One millimetre makes the difference: high-resolution analysis of methane-oxidizing bacteria and their specific activity at the oxic-anoxic interface in a flooded paddy soil. ISME J 6(11):2128–2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts EA (2011) Wilson’s disease. Medicine 39(10):602–604

    Article  Google Scholar 

  • Rosenzweig AC, Frederick CA, Lippard SJ (1992) Crystalization and reliminary X-ray analysis of the methane monooxygenase hydroxylase protein from Methylococcus capsulatus (Bath). J Mol Biol 227:583–585

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig AC, Frederick CA, Lippard SJ, Nordlund P (1993) Crystal stucture of a bacterial non-heme iron hydroxylase protein from Methylococcus capsulatus (Bath). Nature 366:357–543

    Article  Google Scholar 

  • Saha K, Agasti S, Kim C, Li X, Rotello V (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schilsky ML (2001) Treatment of Wilson’s disease: what the the relative roles of penicillamine, trientine, and zinc supplementation? Curr Gastroenterol Rep 3:54–59

    Article  CAS  PubMed  Google Scholar 

  • Schilsky ML (2014) Liver transplantation for Wilson’s disease. Ann NY Acad Sci 1315:45–49

    Article  CAS  PubMed  Google Scholar 

  • Semrau JD, Chistoserdov A, Lebron J, Costello AM, Davagnino J, Kenna E, Holmes AJ, Finch R, Murrell JC, Lidstrom ME (1995) Particulate methane monooxygenase genes in methanotrophs. J Bacteriol 177:3071–3079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semrau JD, DiSpirito AA, Murrell JC (2008) Life in the extreme: thermoacidophilic methanotrophy. Trends Microbiol 16(5):190–193

    Article  CAS  PubMed  Google Scholar 

  • Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34(4):496–531

    Article  CAS  PubMed  Google Scholar 

  • Semrau JD, diSpirito AA, Vuilleumier S (2011) Facultative methanotrophy: false leads, true results, and suggestions for future research. FEMS Microbiol Lett 323(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Semrau JD, Jagadevan S, Dispirito AA, Khalifa A, Scanlan J, Bergman BH, Freemeier BC, Baral BS, Bandow NL, Vorobev A, Haft DH, Vuilleumier S, Murrell JC (2013) Methanobactin and MmoD work in concert to act as the ‘copper-switch’ in methanotrophs. Environ Microbiol 15(11):3077–3086

    CAS  PubMed  Google Scholar 

  • Semrau JD, DiSpirito AA, Gu W, Yoon S (2018) Metals and methanotrophy. Appl Environ Microbiol 84(6)

    Google Scholar 

  • Smith DDS, Dalton H (1989) Solubilization of the methane monooxygenase from Methylococcus capsulatus Bath. Eur J Biochem 182:667–671

    Article  CAS  PubMed  Google Scholar 

  • Squitti R (2012) Copper disfunction in Alzheimer’s disease: from meta-analysis of biochemical studies to new insights into genetics. J Trace Elem Med Biol 26:93–96

    Article  CAS  PubMed  Google Scholar 

  • Squitti R, Siotto M, Polimanti R (2014) Low-copper diet as a preventive strategy for Alzheimer’s disease. Neurobiol Aging 35:540–550

    Article  CAS  Google Scholar 

  • Stanley SH, Prior SD, Leak DJ, Dalton H (1983) Copper stress underlies the fundamental change in intracellular location of methane mono-oxygenase in methane-oxidizing oganisms – studies in batch and continuous cultures. Biotechnol Lett 5(7):487–492

    Article  CAS  Google Scholar 

  • Stattermayer AF, Traussnigg S, Dienes HP, Aigner E, Stauber R, Lackner K, Hofer H, Stift J, Wrba F, Stadlmayr A, Datz C, Strasser M, Maieron A, Trauner M, Ferenci P (2015) Hepatic steatosis in Wilson disease—role of copper and PNPLA3 mutations. J Hepatol 63(1):156–163

    Article  PubMed  CAS  Google Scholar 

  • Stoecker K, Bendinger B, Schöning B, Nielsen PH, Nielsen JL, Baranyi C, Toenshoff ER, Daims H, Wagner M (2006) Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proc Natl Acad Sci USA 103(7):2363–2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strong PJ, Xie S, Clarke WP (2015) Methane as a resource: can the methanotrophs add value? Environ Sci Technol 49:4001–4018

    Article  CAS  PubMed  Google Scholar 

  • Strong PJ, Kalyuzhnaya M, Silverman J, Clarke WP (2016) A methanotroph-based biorefinery: potential scenarios for generating multiple products from a single fermentation. Bioresour Technol 215:314–323

    Article  CAS  PubMed  Google Scholar 

  • Strong PJ, Karthikeyan OP, Zhu J, Clarke W, Wu W (2017) Agro-environmental sustainability. In: Singh JS, Seneviratne G (eds) Managing environmental pollution, vol 2. Springer, Cham, pp 19–40

    Google Scholar 

  • Sullivan MJ, Gates AJ, Appia-Ayme C, Rowley G, Richardson DJ (2013) Copper control of bacterial nitrous oxide emission and its impact on vitamin B12-dependent metabolism. Proc Natl Acad Sci 110(49):19926–19931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Summer KH, Lichtmannegger J, Bandow N, Choi DW, DiSpirito AA, Michalke B (2011) The biogenic methanobactin is an effective chelator for copper in a rat model for Wilson disease. J Trace Elem Med Biol 25(1):36–41

    Article  CAS  PubMed  Google Scholar 

  • Takeguchi M, Miyakawa K, Okura I (1998) Purification and properties of particulate methane monooxygenase from Methylosinus trichosporium OB3b. J Mol Catal Chem 132(2–3):145–153

    Article  CAS  Google Scholar 

  • Tonge GM, Harrison DEF, Knowles CJ, Higgins IL (1975) Properties and partial purification of the methane-oxidizing enzyme systems from Methylosinus trichosporium OB3b. FEBS Lett 58:293–299

    Article  CAS  PubMed  Google Scholar 

  • Torre A, Metivier A, Chu F, Laurens LML, Beck DAC, Pienkos PT, Lidstrom ME, Kalyuzhnaya MG (2015) Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1). Microb Cell Fact 14(1):188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tumanova LV, Tukhvatullin IA, Burbaev DSH, Gvozdev RI, Andersson KK (2008) The binuclear iron site of membrane-bound methane hydroxylase from Methylococcus capsulatus (strain M). Russ J Bioinorgan Chem 34:177–185

    Article  CAS  Google Scholar 

  • Twining BS, Mylon SE, Benoit G (2007) Potential role of copper availability in nitrous oxide accumulation in a temperate lake. Limnol Oceanogr 52(4):1354–1366

    Article  CAS  Google Scholar 

  • Vernon G, Baranova A, Younossi ZM (2011) Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther 34(3):274–285

    Article  CAS  PubMed  Google Scholar 

  • Vorobev A, Jagadevan S, Baral BS, Dispirito AA, Freemeier BC, Bergman BH, Bandow NL, Semrau JD (2013) Detoxification of mercury by methanobactin from Methylosinus trichosporium OB3b. Appl Environ Microbiol 79(19):5918–5926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallar BJ, Lipscomb JD (1996) Dioxygen activation by enzymes containing binuclear non-heme iron clusters. Chem Rev 96(7):2625–2657

    Article  CAS  PubMed  Google Scholar 

  • Walshe JM (2007) Cause of death in Wilson’s disease. Mov Disord 22(15):2216–2220

    Article  PubMed  Google Scholar 

  • Walters KJ, Gassner GT, Lippard SJ, Wagner G (1999) Structure of the soluble methane monooxygenase regulatory protein B. Proc Natl Acad Sci USA 96:7877–7882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss KH, Stremmel W (2012) Evolving perspectives in Wilson disease: diagnosis, treatment and monitoring. Curr Gastroenterol Rep 14(1):1–7

    Article  PubMed  Google Scholar 

  • Woodland MP, Dalton H (1979) Purification and characterization of component A of the methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem 259:53–60

    Google Scholar 

  • Zahn JA, DiSpirito AA (1996) Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath). J Bacteriol 178(4):1018–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JZ, Wallar BJ, Popescu CV, Renner DB, Thomas DD, Lipscomb JD (2006) Methane monooxygenase hydroxylase and B component interactions. Biochemistry 45:2913–2926

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Ralston J, Sedev R, Beattie DA (2009) Functionalized gold nanoparticles: synthesis, structure and colloid stability. J Colloid Interface Sci 331:251–262

    Article  CAS  PubMed  Google Scholar 

  • Zischka H, Lichtmannegger J, Schmitt S, Jagemann N, Schulz S, Wartini D, Jennen L, Rust C, Larochette N, Galluzzi L, Chajes V, Bandow N, Gilles VS, DiSpirito AA, Esposito I, Goettlicher M, Summer KH, Kroemer G (2011) Liver mitochondrial membrane crosslinking and destruction in a rat model of Wilson disease. J Clin Invest 121(4):1508–1518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy D. Semrau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Semrau, J.D., DiSpirito, A.A. (2019). Methanobactin: A Novel Copper-Binding Compound Produced by Methanotrophs. In: Lee, E. (eds) Methanotrophs. Microbiology Monographs, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-23261-0_7

Download citation

Publish with us

Policies and ethics