Skip to main content

Metabolic Engineering of Methanotrophs for the Production of Chemicals and Fuels

  • Chapter
  • First Online:
Methanotrophs

Part of the book series: Microbiology Monographs ((MICROMONO,volume 32))

Abstract

Methane is a promising next-generation carbon feedstock for industrial biotechnology because it is inexpensive and abundant carbon. Biological conversion of methane to valuable products can reduce greenhouse gas (GHG) emissions caused by methane. Recently, genetic manipulation techniques and systems biology has provided new opportunities for metabolic engineering of methanotrophs and engineered strains have been employed as potential industrial strains for methane gas fermentation . For commercialization of the production of chemicals and fuels from methane, methanotrophs need to be further engineered based on rational metabolic engineering strategy to enhance carbon conversion yield, titer, and productivity. In this chapter, recent advances on metabolic engineering of methanotrophs , including genetic tool development, strategy to enhance carbon pool for product conversion, practical example of methane bioconversion , and prospect on the engineered methanotrophic cells as a cell-factory platform are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akberdin IR, Thompson M, Hamilton R, Desai N, Alexander D, Henard CA, Guarnieri MT, Kalyuzhnaya MG (2018) Methane utilization in Methylomicrobium alcaliphilum 20Z R: a systems approach. Sci Rep 8:2512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso-Gutierrez J, Chan R, Batth TS, Adams PD, Keasling JD, Petzold CJ, Lee TS (2013) Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng 19:33–41

    Article  CAS  PubMed  Google Scholar 

  • Anthony C, Ghosh M (1998) The structure and function of the PQQ-containing quinoprotein dehydrogenases. Prog Biophys Mol Biol 69:1–21

    Article  CAS  PubMed  Google Scholar 

  • Arakane K (2001) Superior skin protection by astaxanthin. In: Presentation at the 15th annual meeting on carotenoid research

    Google Scholar 

  • Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89

    Article  CAS  PubMed  Google Scholar 

  • Atsumi S, Wu T, Eckl E, Hawkins SD, Buelter T, Liao JC (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85:651–657

    Article  CAS  PubMed  Google Scholar 

  • Avalos JL, Fink GR, Stephanopoulos G (2013) Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol 31:335–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baani M, Liesack W (2008) Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci 105:10203–10208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger RG (2009) Biotechnology of flavours—the next generation. Biotechnol Lett 31:1651

    Article  CAS  PubMed  Google Scholar 

  • Bergman A, Siewers V, Nielsen J, Chen Y (2016) Functional expression and evaluation of heterologous phosphoketolases in Saccharomyces cerevisiae. AMB Express 6:115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Białkowska AM (2016) Strategies for efficient and economical 2, 3-butanediol production: new trends in this field. World J Microbiol Biotechnol 32:200

    Article  PubMed  CAS  Google Scholar 

  • Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ (2011) Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 77:3300–3310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumenstein J, Albert J, Shulz RP, Kohlpaintner C (2015) Crotonaldehyde and crotonic acid. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim

    Google Scholar 

  • Bogorad IW, Lin TS, Liao JC (2013) Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 502:693–697

    Article  CAS  PubMed  Google Scholar 

  • Branduardi P, Longo V, Berterame NM, Rossi G, Porro D (2013) A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae. Biotechnol Biofuels 6:68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budarin V, Luque R, Macquarrie DJ, Clark JH (2007) Towards a bio-based industry: benign catalytic esterifications of succinic acid in the presence of water. Chem Eur J 13:6914–6919

    Article  CAS  PubMed  Google Scholar 

  • Burke C, Croteau R (2002) Geranyl diphosphate synthase from Abies grandis: cDNA isolation, functional expression, and characterization. Arch Biochem Biophys 405:130–136

    Article  CAS  PubMed  Google Scholar 

  • Cantera S, Lebrero R, Rodriguez E, Garcia-Encina PA, Munoz R (2017a) Continuous abatement of methane coupled with ectoine production by Methylomicrobium alcaliphilum 20Z in stirred tank reactors: a step further towards greenhouse gas biorefineries. J Clean Prod 152:134–141

    Article  CAS  Google Scholar 

  • Cantera S, Lebrero R, Rodriguez S, Garcia-Encina PA, Munoz R (2017b) Ectoine bio-milking in methanotrophs: a step further towards methane-based bio-refineries into high added-value products. Chem Eng J 328:44–48

    Article  CAS  Google Scholar 

  • Cardozo KH, Guaratini T, Barros MP, Falcão VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P (2007) Metabolites from algae with economical impact. Comp Biochem Physiol C Toxicol Pharmacol 146:60–78

    Article  PubMed  CAS  Google Scholar 

  • Cheng K, Wang G, Zeng J, Zhang J (2013) Improved succinate production by metabolic engineering. BioMed Res Int 2013:538790

    PubMed  PubMed Central  Google Scholar 

  • Chew BP, Park JS (2004) Carotenoid action on the immune response. J Nutr 134:257S–261S

    Article  CAS  PubMed  Google Scholar 

  • Chinen A, Kozlov YI, Hara Y, Izui H, Yasueda H (2007) Innovative metabolic pathway design for efficient l-glutamate production by suppressing CO2 emission. J Biosci Bioeng 103:262–269

    Article  CAS  PubMed  Google Scholar 

  • Clement ND, Routaboul L, Grotevendt A, Jackstell R, Beller M (2008) Development of palladium–carbene catalysts for telomerization and dimerization of 1, 3-dienes: from basic research to industrial applications. Chem Eur J 14:7408–7420

    Article  CAS  PubMed  Google Scholar 

  • Clomburg JM, Vick JE, Blankschien MD, Rodríguez-Moyá M, Gonzalez R (2012) A synthetic biology approach to engineer a functional reversal of the β-oxidation cycle. ACS Synth Biol 1:541–554

    Article  CAS  PubMed  Google Scholar 

  • Colby SM, Alonso WR, Katahira EJ, McGarvey DJ, Croteau R (1993) 4S-Limonene synthase from the oil glands of spearmint (Mentha spicata). cDNA isolation, characterization, and bacterial expression of the catalytically active monoterpene cyclase. J Biol Chem 268:23016–23024

    CAS  PubMed  Google Scholar 

  • Coleman WJ, Vidanes GM, Cottarel G, Muley S, Kamimura R, Javan AF, Sun J, Groban ES (2014) Biological conversion of multi-carbon compounds from methane. US 14/206:835

    Google Scholar 

  • Crombie A, Murrell JC (2011) Development of a system for genetic manipulation of the facultative methanotroph Methylocella silvestris BL2. Methods Enzymol 495:119–133

    Article  CAS  PubMed  Google Scholar 

  • Crombie AT, Murrell JC (2014) Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris. Nature 510:148–151

    Article  CAS  PubMed  Google Scholar 

  • Csaki R, Bodrossy L, Klem J, Murrell JC, Kovacs K (2003) Genes involved in the copper-dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath): cloning, sequencing and mutational analysis. Microbiology 149:1785–1795

    Article  CAS  PubMed  Google Scholar 

  • Demidenko A, Akberdin IR, Allemann M, Allen EE, Kalyuzhnaya MG (2017) Fatty acid biosynthesis pathways in Methylomicrobium buryatense 5G(B1). Front Microbiol 7:2167

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhingra V, Rao KV, Narasu ML (1999) Current status of artemisinin and its derivatives as antimalarial drugs. Life Sci 66:279–300

    Article  Google Scholar 

  • DiCosimo DJ, Koffas M, Odom JM, Wang S (2004) Production of cyclic terpenoids. US 09/938:956

    Google Scholar 

  • Donaldson GK, Hollands K, Picataggio SK (2015) Biocatalyst for conversion of methane and methanol to isoprene. US 14/618:066

    Google Scholar 

  • Dong T, Fei Q, Genelot M, Smith H, Laurens LM, Watson MJ, Pienkos PT (2017) A novel integrated biorefinery process for diesel fuel blendstock production using lipids from the methanotroph, Methylomicrobium buryatense. Energy Convers Manag 140:62–70

    Article  CAS  Google Scholar 

  • Du F, Yu H, Xu J, Li C (2014) Enhanced limonene production by optimizing the expression of limonene biosynthesis and MEP pathway genes in E. coli. Bioresour Bioprocess 1:10

    Article  Google Scholar 

  • Factor and Equilibrium (2018) Farnesene market report. https://www.factorandequilibrium.com/press-release/farnesene-market-size-research-report

  • Fall R, Copley SD (2000) Bacterial sources and sinks of isoprene, a reactive atmospheric hydrocarbon. Environ Microbiol 2:123–130

    Article  CAS  PubMed  Google Scholar 

  • Fei Q, Guarnieri MT, Tao L, Laurens LM, Dowe N, Pienkos PT (2014) Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol Adv 32:596–614

    Article  CAS  PubMed  Google Scholar 

  • Fei Q, Puri AW, Smith H, Dowe N, Pienkos PT (2018) Enhanced biological fixation of methane for microbial lipid production by recombinant Methylomicrobium buryatense. Biotechnol Biofuels 11:129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fraser PD, Miura Y, Misawa N (1997) In vitro characterization of astaxanthin biosynthetic enzymes. J Biol Chem 272:6128–6135

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Li Y, Lidstrom M (2017) The oxidative TCA cycle operates during methanotrophic growth of the Type I methanotroph Methylomicrobium buryatense 5GB1. Metab Eng 42:43

    Article  CAS  PubMed  Google Scholar 

  • Garg S, Wu H, Clomburg JM, Bennett GN (2018) Bioconversion of methane to C-4 carboxylic acids using carbon flux through acetyl-CoA in engineered Methylomicrobium buryatense 5GB1C. Metab Eng 48:175–183

    Article  CAS  PubMed  Google Scholar 

  • Gilman A, Laurens LM, Puri AW, Chu F, Pienkos PT, Lidstrom ME (2015) Bioreactor performance parameters for an industrially-promising methanotroph Methylomicrobium buryatense 5GB1. Microb Cell Fact 14:182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gordillo A, Pachón LD, de Jesus E, Rothenberg G (2009) Palladium-catalysed telomerisation of isoprene with glycerol and polyethylene glycol: a facile route to new terpene derivatives. Adv Synth Catal 351:325–330

    Article  CAS  Google Scholar 

  • Grand View Research (2017) 1,4-Butanediol market size, share 1,4 BDO industry report 2014–2025

    Google Scholar 

  • Greenhouse Gas Emissions (2017) Understanding global warming potentials. Environmental Protection Agency

    Google Scholar 

  • Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216

    Article  CAS  PubMed  Google Scholar 

  • Haynes CA, Gonzalez R (2014) Rethinking biological activation of methane and conversion to liquid fuels. Nat Chem Biol 10:331–339

    Article  CAS  PubMed  Google Scholar 

  • Henard CA, Freed EF, Guarnieri MT (2015) Phosphoketolase pathway engineering for carbon-efficient biocatalysis. Curr Opin Biotechnol 36:183–188

    Article  CAS  PubMed  Google Scholar 

  • Henard CA, Smith H, Dowe N, Kalyuzhnaya MG, Pienkos PT, Guarnieri MT (2016) Bioconversion of methane to lactate by an obligate methanotrophic bacterium. Sci Rep 6:21585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henard CA, Smith HK, Guarnieri MT (2017) Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst. Metab Eng 41:152–158

    Article  CAS  PubMed  Google Scholar 

  • Henard CA, Franklin TG, Youhenna B, But S, Alexander D, Kalyuzhnaya MG, Guarnieri MT (2018) Biocatalysis: methanotrophic bacterial cultivation, metabolite profiling, and bioconversion to lactic acid. Front Microbiol 9:2610

    Article  PubMed  PubMed Central  Google Scholar 

  • Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 46:185–196

    Article  CAS  PubMed  Google Scholar 

  • Huelin FE, Murray KE (1966) α-Farnesene in the natural coating of apples. Nature 210:1260–1261

    Article  CAS  PubMed  Google Scholar 

  • Hunter SE, Ehrenberger CE, Savage PE (2006) Kinetics and mechanism of tetrahydrofuran synthesis via 1, 4-butanediol dehydration in high-temperature water. J Org Chem 71:6229–6239

    Article  CAS  PubMed  Google Scholar 

  • Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H (2006) Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod 69:443–449

    Article  CAS  PubMed  Google Scholar 

  • Hwang DW, Kashinathan P, Lee JM, Lee JH, Lee U, Hwang J, Hwang YK, Chang J (2011) Production of γ-butyrolactone from biomass-derived 1, 4-butanediol over novel copper-silica nanocomposite. Green Chem 13:1672–1675

    Article  CAS  Google Scholar 

  • Hwang IY, Hur DH, Lee JH, Park C, Chang IS, Lee JW, Lee EY (2015) Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst. J Microbiol Biotechnol 25:375–380

    Article  CAS  PubMed  Google Scholar 

  • Hwang IY, Nguyen AD, Nguyen TT, Nguyen LT, Lee OK, Lee EY (2018) Biological conversion of methane to chemicals and fuels: technical challenges and issues. Appl Microbiol Biotechnol 102:3071–3080

    Article  CAS  PubMed  Google Scholar 

  • Hyon SH (2000) Biodegradable poly (lactic acid) microspheres for drug delivery systems. Yonsei Med J 41:720–734

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa M, Tanaka Y, Suzuki R, Kimura K, Tanaka K, Kamiya K, Ito H, Kato S, Kamachi T, Hori K, Nakanishi S (2017) Real-time monitoring of intracellular redox changes in Methylococcus capsulatus (Bath) for efficient bioconversion of methane to methanol. Bioresour Technol 241:1157–1161

    Article  CAS  PubMed  Google Scholar 

  • Jackstell R, Grotevendt A, Michalik D, El Firdoussi L, Beller M (2007) Telomerization and dimerization of isoprene by in situ generated palladium–carbene catalysts. J Organomet Chem 692:4737–4744

    Article  CAS  Google Scholar 

  • Ji X, Huang H, Ouyang P (2011) Microbial 2, 3-butanediol production: a state-of-the-art review. Biotechnol Adv 29:351–364

    Article  CAS  PubMed  Google Scholar 

  • Johnson EA (2003) Phaffia rhodozyma: colorful odyssey. Int Microbiol 6:169–174

    Article  CAS  PubMed  Google Scholar 

  • Kabimoldayev I, Nguyen AD, Yang L, Park S, Lee EY, Kim D (2018) Basics of genome-scale metabolic modeling and applications on C1-utilization. FEMS Microbiol Lett 365:fny241

    Article  CAS  Google Scholar 

  • Kalyuzhnaya MG, Yang S, Rozova ON, Smalley NE, Clubb J, Lamb A, Nagana Gowda GA, Raftery D, Fu Y, Bringel F, Vuilleumier S, Beck DAC, Trotsenko YA, Khmelenina VN, Lidstrom ME (2013) Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun 4:2785

    Article  CAS  PubMed  Google Scholar 

  • Kalyuzhnaya M, Puri AW, Lidstrom ME (2015) Metabolic engineering in methanotrophic bacteria. Metab Eng 29:142–152

    Article  CAS  PubMed  Google Scholar 

  • Khmelenina VN, Kalyuzhnaya MG, Sakharovsky VG, Suzina NE, Trotsenko YA, Gottschalk G (1999) Osmoadaptation in halophilic and alkaliphilic methanotrophs. Arch Microbiol 172:321–329

    Article  CAS  PubMed  Google Scholar 

  • Khmelenina VN, Rozova N, But CY, Mustakhimov II, Reshetnikov AS, Beschastnyi AP, Trotsenko YA (2015) Biosynthesis of secondary metabolites in methanotrophs: biochemical and genetic aspects (review). Prikl Biokhim Mikrobiol 51:140–150

    CAS  PubMed  Google Scholar 

  • Kim S, Cheong S, Gonzalez R (2016) Engineering Escherichia coli for the synthesis of short- and medium-chain α,β-unsaturated carboxylic acids. Metab Eng 36:90–98

    Article  PubMed  CAS  Google Scholar 

  • Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355

    Article  CAS  PubMed  Google Scholar 

  • Kuzuyama T (2002) Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci Biotechnol Biochem 66:1619–1627

    Article  CAS  PubMed  Google Scholar 

  • Lane J (2015) Methane-munching platform microbe: the digest’s 2015 8-slide guide to intrexon energy. Biofuels Digest. 2017

    Google Scholar 

  • Larsen Ø, Karlsen OA (2015) Transcriptomic profi ling of Methylococcus capsulatus (Bath) during growth with two different methane monooxygenases. Microbiologyopen 5:254–267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee OK, Hur DH, Nguyen DTN, Lee EY (2016) Metabolic engineering of methanotrophs and its application to production of chemicals and biofuels from methane. Biofuels Bioprod Biorefin 10(6):848–863

    Article  CAS  Google Scholar 

  • Leonard E, Minshull J, Ness JE, Purcell TJ (2014) Compositions and methods for biological production of isoprene. U.S. Patent Application No. 14/773,118 PCT/US2014/021258

    Google Scholar 

  • Lidov RE, Schaffel GS, White CJ (1963) Cracking of neohexene to isoprene. 24 December 1963

    Google Scholar 

  • Lieven C, Petersen LA, Jorgensen SB, Gernaey K, Herrgard M, Sonnenschein N (2018) A genome-scale metabolic model for Methylococcus capsulatus predicts reduced efficiency uphill electron transfer to pMMO. bioRxiv 329714

    Google Scholar 

  • Lloyd JS, De Marco P, Dalton H, Murrell JC (1999) Heterologous expression of soluble methane monooxygenase genes in methanotrophs containing only particulate methane monooxygenase. Arch Microbiol 171:364–370

    Article  CAS  PubMed  Google Scholar 

  • Martin H, Murrell JC (1995) Methane monooxygenase mutants of constructed by marker-exchange mutagenesis. FEMS Microbiol Lett 127:243–248

    Article  CAS  Google Scholar 

  • Marx CJ, Lidstrom ME (2001) Development of improved versatile broad-host-range vectors for use in methylotrophs and other gram-negative bacteria. Microbiology 147:2065–2075

    Article  CAS  PubMed  Google Scholar 

  • Matsen JB, Yang S, Stein LY, Beck D, Kalyuzhnaya MG (2013) Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part I: transcriptomic study. Front Microbiol 4:40

    Article  PubMed  PubMed Central  Google Scholar 

  • McKinlay JB, Vieille C, Zeikus JG (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76:727–740

    Article  CAS  PubMed  Google Scholar 

  • Meadows AL, Hawkins KM, Tsegaye Y, Antipov E, Kim Y, Raetz L, Dahl RH, Tai A, Mahatdejkul-Meadows T, Xu L, Zhao L (2016) Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 537:694–697

    Article  CAS  PubMed  Google Scholar 

  • Meinhold P, Peters MW, Chen MM, Takahashi K, Arnold FH (2005) Direct conversion of ethane to ethanol by engineered cytochrome P450 BM3. Chembiochem 6:1765–1768

    Article  CAS  PubMed  Google Scholar 

  • Meng J, Wang B, Liu D, Chen T, Wang Z, Zhao X (2016) High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli. Microb Cell Fact 15:141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miki W, Yamaguchi K, Konosu S (1982) Comparison of carotenoids in the ovaries of marine fish and shellfish. Comp Biochem Physiol B 71:7–11

    Article  CAS  PubMed  Google Scholar 

  • Morais AR, Dworakowska S, Reis A, Gouveia L, Matos CT, Bogdał D, Bogel-Łukasik R (2015) Chemical and biological-based isoprene production: green metrics. Catal Today 239:38–43

    Article  CAS  Google Scholar 

  • Murrell JC (1992) Genetics and molecular biology of methanotrophs. FEMS Microbiol Lett 88:233–248

    Article  CAS  Google Scholar 

  • Muller JE, Meyer F, Litsanov B, Kiefer P, Potthoff E, Heux S, Quax WJ, Wendisch VF, Brautaset T, Portais J (2015) Engineering Escherichia coli for methanol conversion. Metab Eng 28:190–201

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Bertomeu J, Ros R, Arrillaga I, Segura J (2008) Expression of spearmint limonene synthase in transgenic spike lavender results in an altered monoterpene composition in developing leaves. Metab Eng 10:166–177

    Article  CAS  PubMed  Google Scholar 

  • Muntendam R, Melillo E, Ryden A, Kayser O (2009) Perspectives and limits of engineering the isoprenoid metabolism in heterologous hosts. Appl Microbiol Biotechnol 84:1003

    Article  CAS  PubMed  Google Scholar 

  • Mustakhimov II, But SY, Reshetnikov AS, Khmelenina VN, Trotsenko YA (2016) Homo and heterologous reporter proteins for evaluation of promoter activity in Methylomicrobium alcaliphilum 20Z. Appl Biochem Microbiol 52:263–268

    Article  CAS  Google Scholar 

  • Nattrass L, Aylott M, Higson A (2013) NNFCC renewable chemicals factsheet: succinic acid. NNFCC, York

    Google Scholar 

  • Nguyen HH, Chan S (2003) Protein and nucleic acid expression systems. US20030032141 A1

    Google Scholar 

  • Nguyen AD, Hwang IY, Lee OK, Hur DH, Jeon YC, Hadiyati S, Kim MS, Yoon SH, Jeong H, Lee EY (2018a) Functional analysis of Methylomonas sp. DH-1 genome as a promising biocatalyst for bioconversion of methane to valuable chemicals. Catalysts 8:117

    Article  CAS  Google Scholar 

  • Nguyen AD, Hwang IY, Lee OK, Kim D, Kalyuzhnaya MG, Mariyana R, Hadiyati S, Kim MS, Lee EY (2018b) Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2, 3-butanediol production from methane. Metab Eng 47:323–333

    Article  CAS  PubMed  Google Scholar 

  • Nguyen DTN, Lee OK, Hadiyati S, Affifah AN, Kim MS, Lee EY (2019) Metabolic engineering of the type I methanotroph Methylomonas sp. DH-1 for production of succinate from methane. Metab Eng 54:170–117

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa Y, Minenaka Y, Ichimura M, Tatsumi K, Nadamoto T, Urabe K (2005) Effects of astaxanthin and vitamin C on the prevention of gastric ulcerations in stressed rats. J Nutr Sci Vitaminol 51:135–141

    Article  CAS  PubMed  Google Scholar 

  • Niu FX, Lu Q, Bu YF, Liu JZ (2017) Metabolic engineering for the microbial production of isoprenoids: carotenoids and isoprenoid-based biofuels. Synth Syst Biotechnol 2:167

    Article  PubMed  PubMed Central  Google Scholar 

  • Ojala DS, Beck DA, Kalyuzhnaya MG (2011) Genetic systems for moderately halo (alkali) philic bacteria of the genus Methylomicrobium. Meth Enzymol 495:99–118

    Article  Google Scholar 

  • Oliver JW, Machado IM, Yoneda H, Atsumi S (2013) Cyanobacterial conversion of carbon dioxide to 2, 3-butanediol. Proc Natl Acad Sci 110:1249–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pare PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel A, Prajapat JB (2013) Food and health applications of exopolysaccharides produced by lactic acid bacteria. Adv Dairy Res 1:107

    Google Scholar 

  • Pawar RU, Tekale SU, Shisodia SU, Totre JT, Domb AJ (2014) Biomedical applications of poly (lactic acid). Recent Pat Regen Med 4:40–51

    CAS  Google Scholar 

  • Puri AW, Owen S, Chu F, Chavkin T, Beck DA, Kalyuzhnaya MG, Lidstrom ME (2015) Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense. Appl Environ Microbiol 81:1775–1781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Renninger NS, Mcphee DJ (2008) Inventors; Amyris Biotechnologies Inc, assignee. Fuel compositions comprising farnesane and farnesane derivatives and method of making and using same. United States patent US 7,399,323

    Google Scholar 

  • Reshetnikov AS, Khmelenina VN, Mustakhimov II, Trotsenko YA (2011) 2 Genes and enzymes of ectoine biosynthesis in halotolerant methanotrophs. Methods Enzymol 495:15

    Article  CAS  PubMed  Google Scholar 

  • Rick WY, Yao H, Stead K, Wang T, Tao L, Cheng Q, Sharpe PL, Suh W, Nagel E, Arcilla D (2007) Construction of the astaxanthin biosynthetic pathway in a methanotrophic bacterium Methylomonas sp. strain 16a. J Ind Microbiol Biotechnol 34:289

    Article  CAS  Google Scholar 

  • Ro SY, Rosenzweig AC (2018) Recent advances in the genetic manipulation of Methylosinus trichosporium OB3b. Methods Enzymol 605:335–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Anton LM, Gutierrez-Martin F, Doce Y (2016) Physical properties of gasoline, isobutanol and ETBE binary blends in comparison with gasoline ethanol blends. Fuel 166:73–78

    Article  CAS  Google Scholar 

  • Rydz J, Sikorska W, Kyulavska M, Christova D (2014) Polyester-based (bio) degradable polymers as environmentally friendly materials for sustainable development. Int J Mol Sci 16:564–596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saville RM, Lee S, Regitsky DD, Resnick SM, Silverman JA (2016) Inventors; CALYSTA Inc, assignee. Compositions and methods for biological production of lactate from C1 compounds using lactate dehydrogenase transformants. United States patent application US 14/898,948

    Google Scholar 

  • Sharpe PL, DiCosimo D, Bosak MD, Knoke K, Tao L, Cheng Q, Rick WY (2007) Use of transposon promoter-probe vectors in the metabolic engineering of the obligate methanotroph Methylomonas sp. strain 16a for enhanced C40 carotenoid synthesis. Appl Environ Microbiol 73:1721–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel JB, Smith AL, Poust S, Wargacki AJ, Bar-Even A, Louw C, Shen BW, Eiben CB, Tran HM, Noor E (2015) Computational protein design enables a novel one-carbon assimilation pathway. Proc Natl Acad Sci U S A 112:3704–3709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith TJ, Murrell JC (2011) Chapter nine – Mutagenesis of soluble methane monooxygenase. In: Rosenzweig AC, Ragsdale SW (eds) Methods in enzymology methods in methane metabolism, part B: methanotrophy, vol 495. Academic Press, Cambridge, pp 135–147

    Chapter  Google Scholar 

  • Smith TJ, Slade SE, Burton NP, Murrell JC, Dalton H (2002) Improved system for protein engineering of the hydroxylase component of soluble methane monooxygenase. Appl Environ Microbiol 68:5265–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strong PJ, Xie S, Clarke WP (2015) Methane as a resource: can the methanotrophs add value? Environ Sci Technol 49:4001–4018

    Article  CAS  PubMed  Google Scholar 

  • Subbian E (2017a) Inventor; String Bio Private Limited, assignee. Production of lactic acid from organic waste or biogas or methane using recombinant methanotrophic bacteria. United States patent application US 15/303,188

    Google Scholar 

  • Subbian E (2017b) Inventor; String Bio Private Limited, assignee. Production of succinic acid from organic waste or biogas or methane using recombinant methanotrophic bacterium. United States patent application US 15/303,184

    Google Scholar 

  • Tao L, Sedkova N, Yao H, Rick WY, Sharpe PL, Cheng Q (2007) Expression of bacterial hemoglobin genes to improve astaxanthin production in a methanotrophic bacterium Methylomonas sp. Appl Microbiol Biotechnol 74:625

    Article  CAS  PubMed  Google Scholar 

  • Theisen AR, Ali MH, Radajewski S, Dumont MG, Dunfield PF, McDonald IR, Dedysh SN, Miguez CB, Murrell JC (2005) Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol Microbiol 58:682–692

    Article  CAS  PubMed  Google Scholar 

  • Torre A, Metivier A, Chu F, Laurens LM, Beck DA, Pienkos PT, Lidstrom ME, Kalyuzhnaya MG (2015) Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1). Microb Cell Fact 14:188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Torrissen OJ, Christiansen R (1995) Requirements for carotenoids in fish diets. J Appl Ichthyol 11:225–230

    Article  CAS  Google Scholar 

  • Tracy NI, Chen D, Crunkleton DW, Price GL (2009) Hydrogenated monoterpenes as diesel fuel additives. Fuel 88:2238–2240

    Article  CAS  Google Scholar 

  • Van Ophem PW, Van Beeumen J, Duine JA (1993) Nicotinoprotein [NAD (P)-containing] alcohol/aldehyde oxidoreductases. Purification and characterization of a novel type from Amycolatopsis methanolica. Eur J Biochem 212:819–826

    Article  PubMed  Google Scholar 

  • Visser H, van Ooyen AJ, Verdoes JC (2003) Metabolic engineering of the astaxanthin-biosynthetic pathway of Xanthophyllomyces dendrorhous. FEMS Yeast Res 4:221–231

    Article  CAS  PubMed  Google Scholar 

  • Vorobev A, Jagadevan S, Jain S, Anantharaman K, Dick GJ, Vuilleumier S, Semrau JD (2014) Genomic and transcriptomic analyses of the facultative methanotroph Methylocystis sp. strain SB2 grown on methane or ethanol. Appl Environ Microbiol 80:3044–3052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2:307–344

    Article  CAS  PubMed Central  Google Scholar 

  • Wang C, Yoon S, Jang H, Chung Y, Kim J, Choi E, Kim S (2011) Metabolic engineering of Escherichia coli for α-farnesene production. Metab Eng 13:648–655

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang Y, Liu J, Li Q, Zhang Z, Zheng P, Lu F, Sun J (2017) Biological conversion of methanol by evolved Escherichia coli carrying a linear methanol assimilation pathway. Bioresour Bioprocess 4:41

    Article  Google Scholar 

  • Welander PV, Summons RE (2012) Discovery, taxonomic distribution, and phenotypic characterization of a gene required for 3-methylhopanoid production. Proc Natl Acad Sci U S A 109:12905–12910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitaker WB, Sandoval NR, Bennett RK, Fast AG, Papoutsakis ET (2015) Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization. Curr Opin Biotechnol 33:165–175

    Article  CAS  PubMed  Google Scholar 

  • Whitaker WB, Jones JA, Bennett RK, Gonzalez JE, Vernacchio VR, Collins SM, Palmer MA, Schmidt S, Antoniewicz MR, Koffas MA (2017) Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli. Metab Eng 39:49–59

    Article  CAS  PubMed  Google Scholar 

  • Williams DC, McGarvey DJ, Katahira EJ, Croteau R (1998) Truncation of limonene synthase preprotein provides a fully active ‘pseudomature’ form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair. Biochemistry 37:12213–12220

    Article  CAS  PubMed  Google Scholar 

  • Witthoff S, Schmitz K, Niedenfhr S, Nh K, Noack S, Bott M, Marienhagen J (2015) Metabolic engineering of Corynebacterium glutamicum for methanol metabolism. Appl Environ Microbiol 81:2215–2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Z, Wang X, Huang Y, Huo F, Zhu X, Xi L, Lu JR (2012) Thermophilic fermentation of acetoin and 2, 3-butanediol by a novel Geobacillus strain. Biotechnol Biofuels 5:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Guo B (2010) Poly (butylene succinate) and its copolymers: research, development and industrialization. Biotechnol J 5:1149–1163

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Chu H, Gao C, Tao F, Zhou Z, Li K, Li L, Ma C, Xu P (2014) Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2, 3-butanediol. Metab Eng 23:22–33

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Chu F, Puri AW, Fu Y, Lidstrom ME (2016) Electroporation-based genetic manipulation in type I methanotrophs. Appl Environ Microbiol 82:2062–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang DS, Son KC, Kays SJ (2009) Volatile organic compounds emanating from indoor ornamental plants. Hortic Sci 44:396–400

    Google Scholar 

  • Yang S, Matsen JB, Konopka M, Green-Saxena A, Clubb J, Sadilek M, Orphan VJ, Beck D, Kalyuzhnaya MG (2013) Global molecular analyses of methane metabolism in methanotrophic Alphaproteobacterium, Methylosinus trichosporium OB3b. Part II. Metabolomics and 13C-labeling study. Front Microbiol 4:70

    PubMed  PubMed Central  Google Scholar 

  • Ye R, Yao H, Stead K, Wang T, Tao L, Cheng Q, Sharpe PL, Suh W, Nagel E, Arcilla D, Dragotta D, Miller ES (2007) Construction of the astaxanthin biosynthetic pathway in a methanotrophic bacterium Methylomonas strain 16a. J Ind Microbiol Biotechnol 34:289–299

    Article  CAS  PubMed  Google Scholar 

  • Ye RW, Kelly K (2012) Construction of carotenoid biosynthetic pathways through chromosomal integration in methane-utilizing bacterium Methylomonas sp. Strain 16a. Methods Mol Biol 892:185–195

    Article  CAS  PubMed  Google Scholar 

  • Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R (2011) Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol. Nat Chem Biol 7:445–452

    Article  CAS  PubMed  Google Scholar 

  • Zeikus JG, Jain MK, Elankovan P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51:545–552

    Article  CAS  Google Scholar 

  • Zhang X, Pan L, Wei X, Gao H, Liu J (2007) Impact of astaxanthin-enriched algal powder of Haematococcus pluvialis on memory improvement in BALB/c mice. Environ Geochem Health 29:483–489

    Article  PubMed  CAS  Google Scholar 

  • Zilly FE, Acevedo JP, Augustyniak W, Deege A, Husig UW, Reetz MT (2011) Tuning a P450 enzyme for methane oxidation. Angew Chem 123:2772–2776

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the C1 Gas Refinery Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (2015M3D3A1A01064882).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Yeol Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, O.K., Nguyen, D.T.N., Lee, E.Y. (2019). Metabolic Engineering of Methanotrophs for the Production of Chemicals and Fuels. In: Lee, E. (eds) Methanotrophs. Microbiology Monographs, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-23261-0_6

Download citation

Publish with us

Policies and ethics