Skip to main content

Diversity, Physiology, and Biotechnological Potential of Halo(alkali)philic Methane-Consuming Bacteria

  • Chapter
  • First Online:
Methanotrophs

Part of the book series: Microbiology Monographs ((MICROMONO,volume 32))

Abstract

Nature supplies us with a large array of microbes , known as methanotrophs , as efficient factories for methane capturing and conversions. Among them, the halo(alkali)philic methanotrophs stand out as the most favorable systems for industrial explorations as new sources of salt/pH stable enzymes and as native producers of amino acids, sugars, and osmoprotectants . In recent years, the array of halo(alkali)philic methanotroph applications has been extended to fuels and chemicals, fostering thorough investigations of their physiology , genetics , genomics and systems biology . Here we summarize four decades of research on halo(alkali)philic methanotrophic bacteria , as well as provide our vision of further developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akberdin IR, Collins DA, Hamilton R, Oshchepkov DY, Shukla AK, Nicora CD, Nakayasu ES, Adkins JN, Kalyuzhnaya MG (2018a) Rare earth elements alter redox balance in Methylomicrobium alcaliphilum 20ZR. Front Microbiol 9:2735

    Article  PubMed  PubMed Central  Google Scholar 

  • Akberdin IR, Thompson M, Hamilton R, Desai N, Alexander D, Henard CA, Guarnieri MT, Kalyuzhnaya MG (2018b) Methane utilization in Methylomicrobium alcaliphilum 20ZR: a systems approach. Sci Rep 8:2512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Antony CP, Kumaresan D, Hunger S, Drake HL, Murrell JC, Shouche YS (2013) Microbiology of Lonar Lake and other soda lakes. ISME J 7:468–476

    Article  PubMed  CAS  Google Scholar 

  • Banta AB, Wei JH, Welander PV (2015) A distinct pathway for tetrahymanol synthesis in bacteria. Proc Natl Acad Sci U S A 112:13478–13483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bialkowska AM (2016) Strategies for efficient and economical 2,3-butanediol production: new trends in this field. World J Microbiol Biotechnol 32(12):200

    Article  PubMed  CAS  Google Scholar 

  • Boden R, Cunliffe M, Scanlan J, Maussard H, Kits KD, Koltz MG, Jetten MS, Vuilleumier S, Han J, Peters L, Mikhailova N, Teshima H, Tapia R, Kyrpides N, Ivanova N, Pagani I, Cheng JF, Goodwin L, Han C, Hauser L, Land ML, Lapidus A, Lucas S, Pitluck S, Woyke T, Stein L, Murrell JC (2011) Complete genome sequence of the aerobic marine methanotroph Methylomonas methanica MC09. J Bacteriol 193(24):7001–7002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boetius A, Wenzhöfer F (2013) Seafloor oxygen consumption fuelled by methane from cold seeps. Nat Geosci 6:725–734

    Article  CAS  Google Scholar 

  • Bowman JP, Sly LI, Nichols PD, Hayward AC (1993) Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 43:735–753

    Article  Google Scholar 

  • Bowman JP, McCammon SA, Skerratt JH (1997) Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antartic marine-salinity, meromictic lakes. Microbiology 143:1451–1459

    Article  CAS  PubMed  Google Scholar 

  • Burdette MD (2013) Production of biodiesel-like components by the Type I methanotroph Methylomonas methanica. Master’s thesis. Clemson University, Clemson, SC

    Google Scholar 

  • But SY, Rozova ON, Khmelenina VN, Reshetnikov AS, Trotsenko YA (2012) Properties of recombinant ATP-dependent fructokinase from the halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. Biochem Mosc 77(4):372–377

    Article  CAS  Google Scholar 

  • But SY, Khmelenina VN, Reshetnikov AS, Mustakhimov II, Kalyuzhnaya MG, Trotsenko YA (2015) Sucrose metabolism in halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. Arch Microbiol 197(3):471–480

    Article  CAS  PubMed  Google Scholar 

  • But SY, Egorova SV, Khmelenina VN, Trotsenko YA (2017) Biochemical properties and phylogeny of hydroxypyruvate reductases from methanotrophic bacteria with differenent C1-assimilation pathways. Biochem Mosc 82(11):1295–1303

    Article  CAS  Google Scholar 

  • But SY, Egorova SV, Khmelenina VN, Trotsenko YA (2018) Serine-glyoxylate aminotransferases from methanotrophs using different C1-assimilation pathways. Antonie Van Leeuwenhoek 112(5):741–751. https://doi.org/10.1007/s10482-018-1208-4

    Article  CAS  PubMed  Google Scholar 

  • Cantera S, Sánchez-Andrea I, Lebrero R, García-Encina PA, Stams AJM, Muñoz R (2018) Multi-production of high added market value metabolites from diluted methane emissions via methanotrophic extremophiles. Bioresour Technol 267:401–407

    Article  CAS  PubMed  Google Scholar 

  • Chu F, Lidstrom ME (2016) XoxF acts as the predominant methanol dehydrogenase in the type I methanotroph Methylomicrobium buryatense. J Bacteriol 198(8):1317–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrado RJ, Gonzalez R (2014) Envisioning the bioconversion of methane to liquid fuels. Science 343(6171):621–623

    Article  CAS  PubMed  Google Scholar 

  • De la Torre A, Metivier A, Chu F, Laurens LM, Beck DA, Pienkos PT, Lidsrom ME, Kalyuzhnaya MG (2015) Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1). Microb Cell Factories 14:188

    Article  CAS  Google Scholar 

  • Demidenko A, Akberdin IR, Allemann M, Allen EE, Kalyuzhnaya MG (2017) Fatty acid biosynthesis pathways in Methylomicrobium buryatense 5G(B1). Front Microbiol 7:2167

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng YW, Ro SY, Rosenzweig AC (2018) Structure and function of the lanthanide-dependent methanol dehydrogenase XoxF from the methanotroph Methylomicrobium buryatense 5GB1C. J Biol Inorg Chem 23(7):1037–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Detkova EN, Boltyanskaya YV (2007) Osmoadaptation of haloalkaliphilic bacteria: role of osmoregulators and their possible practical application. Microbiology 76(5):581–593

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Barcelona MJ, Semrau JD (2000) Characterization of methanotrophic bacteria on the basis of intact phospholipid profiles. FEMS Microbiol Lett 189(1):67–72

    Article  CAS  PubMed  Google Scholar 

  • Fei Q, Guarnieri MT, Tao L, Laurens LM, Dowe N, Pienkos PT (2014) Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol Adv 32(3):596–614

    Article  CAS  PubMed  Google Scholar 

  • Fei Q, Puri AW, Smith H, Dowe N, Pienkos PT (2018) Enhanced biological fixation of methane for microbial lipid production by recombinant Methylomicrobium buryatense. Biotechnol Biofuels 11:129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flynn JD, Hirayama H, Sakai Y, Dunfield PF, Klotz MG, Knief C, Op den Camp HJ, Jetten MS, Khmelenina VN, Trotsenko YA, Murrell JC, Semrau JD, Svenning MM, Stein LY, Kyrpides N, Shapiro N, Woyke T, Bringel F, Vuilleumier S, DiSpirito AA, Kalyuzhnaya MG (2016) Draft genome sequences of gammaproteobacterial methanotrophs isolated from marine ecosystems. Genome Announc 4(1):e01629–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Li Y, Lidstrom M (2017) The oxidative TCA operates during methanotrophic growth of the Type I methanotroph Methylomicrobium buryatense 5GB1. Metab Eng 42:43–51

    Article  CAS  PubMed  Google Scholar 

  • Fuse H, Ohta M, Takimura O, Murakami K, Inoue H, Yamaoka Y, Oclarit JM, Omori T (1998) Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase. Biosci Biotechnol Biochem 62(10):1925–1931

    Article  CAS  PubMed  Google Scholar 

  • Galinski EA, Truper HG (1982) Betaine, a compatible solute in the extremely halophilic phototrophic bacterium Ectothiorhodospira halochloris. FEMS Microbiol Lett 13:357–360

    Article  CAS  Google Scholar 

  • Galinski EA, Pfeiffer H, Truper HG (1985) 4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid. Eur J Biochem 149(1):135–139

    Article  CAS  PubMed  Google Scholar 

  • Garg S, Clomburg JM, Gonzalez R (2018) A modular approach for high-flux lactic acid production from methane in an industrial medium using engineered Methylomicrobium buryatense 5GB1. J Ind Microbiol Biotechnol 45(6):379–391

    Article  CAS  PubMed  Google Scholar 

  • Gilman A, Fu Y, Hendershott M, Chu F, Puri AW, Smith AL, Pesesky M, Lieberman R, Beck DAC, Lidstrom ME (2017) Oxygen-limited metabolism in the methanotroph Methylomicrobium buryatense 5GB1C. Peer J 5:e3945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graf R, Anzali S, Buenger J, Pfluecker F, Driller H (2008) The multifunctional role of ectione as a natural cell protectant. Clin Dermatol 26(4):326–333

    Article  PubMed  Google Scholar 

  • Hamilton R, Kits KD, Ramonovskaya VA, Rozova ON, Yurimoto H, Iguchi H, Khmelenina VN, Sakai Y, Dunfield PF, Klotz MG, Knief C, Op den Camp HJ, Jetten MS, Bringel F, Vuilleumier S, Svenning MM, Shapiro N, Woyke T, Trotsenko YA, Stein LY, Kalyuzhnaya MG (2015) Draft genomes of gammaproteobacterial methanotrophs isolated from terrestrial ecosystems. Genome Announc 3(3):e00515-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Handler RM, Shonnard DR (2018) Environmental life cycle assessment of methane biocatalysis: key considerations and potential impacts. In: Kalyuzhnaya MG, Xing XH (eds) Methane biocatalysis: paving the way to sustainability. Springer, Berlin, pp 253–270

    Chapter  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60(2):439–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henard CA, Guarnieri MT (2018) Metabolic engineering of methanotrophic bacteria for industrial biomanufacturing. In: Kalyuzhnaya MG, Xing XH (eds) Methnane biocatalysis: paving the way to sustainability. Springer, Berlin, pp 117–132

    Chapter  Google Scholar 

  • Henard CA, Smith H, Dowe N, Kalyuzhnaya MG, Pienkos PT, Guarnieri MT (2016) Bioconversion of methane to lactate by an obligate methanotrophic bacterium. Sci Rep 6:21585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henard CA, Smith HK, Guarnieri MT (2017) Phosphoketolase overexpression increases biomass and lipid yield from methane in an oligate methanotrophic biocatalyst. Metab Eng 41:152–158

    Article  CAS  PubMed  Google Scholar 

  • Heyer J, Berger U, Hardt M, Dunfield PF (2005) Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. Int J Syst Evol Microbiol 55:1817–1826

    Article  CAS  PubMed  Google Scholar 

  • Hill EA, Chrisler WB, Beliaev AS, Bernstein HC (2017) A flexible microbial co-culture platform for simultaneous utilization of methane and carbon dioxide from gas feedstocks. Bioresour Technol 228:250–256

    Article  CAS  PubMed  Google Scholar 

  • Hirayama H, Suzuki Y, Abe M, Miyazaki M, Makita H, Inagaki F, Uematsu K, Takai K (2011) Methylothermus subterraneus sp. nov., a moderately thermophilic methanotroph isolated from a terrestrial subsurface hot aquifer. Int J Syst Evol Microbiol 61:2646–2653

    Article  CAS  PubMed  Google Scholar 

  • Hirayama H, Hiroyuki F, Abe M, Miyazaki M, Nakamura T, Nunoura T, Furushima Y, Yamamoto H, Takai K (2013) Methylomarinum vadi gen. nov., sp. nov., a methanotroph isolated from two distinct marine environments. Int J Syst Evol Microbiol 63:1073–1082

    Article  CAS  PubMed  Google Scholar 

  • Hirayama H, Abe M, Miyazaki M, Nunoura T, Furushima Y, Yamamoto H, Takai K (2014) Methylomarinovum caldicuralii gen. nov., sp. nov., a moderately thermophilic methanotroph isolated from a shallow submarine hydrothermal system, and proposal of the family Methylothermaceae fam. nov. Int J Syst Evol Microbiol 64:989–999

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. http://www.ipcc.ch/report/ar5/wg2/

  • Kalyuzhnaya MG (2016a) Methane biocatalysis: selecting the right microbe. In: Eckert C, Trinh CT (eds) Biotechnologies for biofuel production and optimization. Elsevier, Oxford, pp 353–383

    Chapter  Google Scholar 

  • Kalyuzhnaya MG (2016b) Methylomicrobium. Bergey’s manual of systematics of archaea and bacteria. pp 1–12. https://doi.org/10.1002/9781118960608.gbm01182.pub2

  • Kalyuzhnaya MG, Khmelenina VN, Starostina NG, Baranova SV, Suzina NE, Trotsenko YA (1998) New moderately halophilic methanotrophic of the genus Methylobacter. Microbiology 67:438–444

    CAS  Google Scholar 

  • Kalyuzhnaya MG, Khmelenina VN, Lysenko AM, Suzina NE, Trotsenko YA (1999) New methanotrophic isolates from soda lakes of the southern Transbaikal region. Microbiology 68(5):677–685

    Google Scholar 

  • Kalyuzhnaya MG, Khmelenina V, Eshinimaev B, Suzina N, Nikitin D, Solonin A, Lin JL, McDonald I, Murrell C, Trotsenko Y (2001) Taxonomic characterization of new alkaliphilic and alkalitolerant methanotrophs from soda lakes of the southeastern Transbaikal region and description of Methylomicrobium buryatense sp. nov. Syst Appl Microbiol 24(2):166–176

    Article  Google Scholar 

  • Kalyuzhnaya MG, Khmelenina V, Eshinimaev B, Sorokin D, Fuse H, Lidstrom M, Trotsenko Y (2008) Classification of halo (alkali) philic and halo (alkali) tolerant methanotrophs provisionally assigned to the genera Methylomicrobium and Methylobacter and emended description of the genus Methylomicrobium. Int J Syst Evol Microbiol 58:591–596

    Article  CAS  PubMed  Google Scholar 

  • Kalyuzhnaya MG, Puri AW, Lidstrom ME (2015) Metabolic engineering in methanotrophic bacteria. Metab Eng 29:142–152

    Article  CAS  PubMed  Google Scholar 

  • Kalyuzhnaya MG, Yang S, Rozova ON, Smalley NE, Clubb J, Lamb A, Gowda GA, Raftery D, Fu Y, Bringel F, Vuilleumier S, Beck DA, Trotsenko YA, Khmelenina VN, Lidstrom ME (2013) Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun 4:2785

    Article  CAS  PubMed  Google Scholar 

  • Kalyuzhnaya MG, Demidenko O, Collins DA (2018) Compositions and methods using methanotrophic S-layer proteins for expression of heterologous proteins. U.S. provisional patent application no. USSN 62/551:502

    Google Scholar 

  • Kates M (1986) Influence of salt concentration on membrane lipids of halophilic bacteria. FEMS Microbiol Rev 39(1–2):95–101

    Article  CAS  Google Scholar 

  • Khmelenina VN, Kalyuzhnaya MG, Starostina NG, Suzina NE, Trotsenko YA (1997) Isolation and characterization of halotolerant alkaliphilic methanotrophic bacteria from Tuva Soda lakes. Curr Microbiol 35(5):257–261

    Article  CAS  Google Scholar 

  • Khmelenina VN, Kalyuzhnaya MG, Sakharovsky VG, Suzina NE, Trotsenko YA, Gottschalk G (1999) Osmoadaptation in halophilic and alkaliphilic methanotrophs. Arch Microbiol 172(5):321–329

    Article  CAS  PubMed  Google Scholar 

  • Khmelenina VN, Sakharovskii VG, Reshetnikov AS, Trotsenko YA (2000) Synthesis of osmoprotectants by halophlic and alkaliphilic methanotrophs. Microbiology 69(4):381–386

    Article  CAS  Google Scholar 

  • Khmelenina VN, Beck DAC, Munk C, Davenport K, Daligault H, Erkkila T, Goodwin L, Gu W, Lo CC, Scholz M, Teshima H, Xu Y, Chain P, Bringel F, Vuilleumier S, Dispirito A, Dunfield P, Jetten MS, Klotz MG, Knief C, Murrell JC, Op den Camp HJ, Sakai Y, Semrau J, Svenning M, Stein LY, Trotsenko YA, Kalyuzhnaya MG (2013a) Draft genome sequence of Methylomicrobium buryatense strain 5G, a haloalkaline-tolerant methanotrophic bacterium. Genome Announc 1(4):e00053-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Khmelenina VN, Suzina NE, Trotsenko YA (2013b) Surface layers of methanotrophic bacteria. Microbiology 82(5):515–527

    Article  CAS  PubMed  Google Scholar 

  • Khmelenina VN, Rozova ON, Akberdin IR, Kalyuzhnaya MG, Trotsenko YA (2018) Pyrophosphate-dependent enzymes in methanotrophs: new findings and views. In: Kalyuzhnaya MG, Xing XH (eds) Methane biocatalysis: paving the way to sustainability. Springer, Berlin, pp 83–98

    Chapter  Google Scholar 

  • Kim HG, Kim SW (2006) Purification and characterization of a methanol dehydrogenase derived from Methylomicrobium sp. HG-1 cultivated using a compulsory circulation diffusion system. Biotechnol Bioprocess Eng 11:134–139

    Article  CAS  Google Scholar 

  • Li X, Roberti R, Blobel G (2015) Structure of an integral membrane sterol reductase from Methylomicrobium alcaliphilum. Nature 517(7532):104–107. https://doi.org/10.1038/nature13797

    Article  CAS  PubMed  Google Scholar 

  • Lidstrom ME (1988) Isolation and characterization of marine methanotrophs. Antonie Van Leeuwenhoek 54:189–199

    Article  CAS  PubMed  Google Scholar 

  • Marini A, Reinelt K, Krutmann J, Bilstein A (2014) Ectoine-containing cream in the treatment of mild to moderate atopic dermatitis: a randomised, comparator-controlled, intra-individual double-blind, multi-center trial. Skin Pharmacol Physiol 27(2):57–65

    Article  CAS  PubMed  Google Scholar 

  • Mühlemeier MI, Speight R, Strong PJ (2018) Biogas, bioreactors and bacterial methane oxidation. In: Kalyuzhnaya MG, Xing X (eds) Methnane biocatalysis: paving the way to sustainability. Springer, Berlin, pp 213–235

    Chapter  Google Scholar 

  • Mustakhimov II, Reshetnikov AS, Glukhov AS, Khmelenina VN, Kalyuzhnaya MG, Trotsenko YA (2010) Identification and characterization of EctR1, a new transcriptional regulator of the ectoine biosynthesis genes in the halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. J Bacteriol 192(2):410–417

    Article  CAS  PubMed  Google Scholar 

  • Mustakhimov II, Rozova ON, Solntseva NP, Khmelenina VN, Reshetnikov AS, Trotsenko YA (2017) The properties and potential metabolic role of glucokinase in halotolerant obligate methanotroph Methylomicrobium alcaliphilum 20Z. Antonie Van Leeuwenhoek 110(3):375–386

    Article  CAS  PubMed  Google Scholar 

  • Nguyen AD, Hwang IY, Lee OK, Kim D, Kalyuzhnaya MG, Mariyana R, Hadiyati S, Kim MS, Lee EY (2018) Systematic metabolic engineering of Methylomicrobium alcaliphilium 20Z for 2,3-butanediol production form methane. Metab Eng 47:323–333

    Article  CAS  PubMed  Google Scholar 

  • Ojala DS, Beck DA, Kalyuzhnaya MG (2011) Genetic systems for moderately halo(alkali)philic bacteria of the genus Methylomicrobium. Methods Enzymol 495:99–118

    Article  PubMed  Google Scholar 

  • Orata FD, Meier-Kolthoff JP, Sauvageau D, Stein LY (2019) Phylogenomic analysis of the gammaproteobacterial methanotrophs (order Methylococcales) calls for the reclassification of members at the genus and species levels. Front Microbiol 9:3162

    Article  Google Scholar 

  • Petersen JM, Dubilier N (2009) Methanotrophic symbioses in marine invertebrates. Environ Microbiol Rep 1(5):319–335

    Article  CAS  PubMed  Google Scholar 

  • Puri AW, Owen S, Chu F, Chavkin T, Beck DA, Kalyuzhnaya MG, Lidstrom ME (2015) Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense. Appl Environ Microbiol 81:1775–1781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356

    Article  CAS  Google Scholar 

  • Reshetnikov AS, Mustakhimov II, Khmelenina VN, Trotsenko YA (2005) Cloning, purification, and characterization of diaminobutyrate acetyltransferase from the halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. Biochemistry 70(8):878–883

    CAS  PubMed  Google Scholar 

  • Reshetnikov AS, Khmelenina VN, Trotsenko YA (2006) Characterization of the ectoine biosynthesis genes of haloalkalotolerant obligate methanotroph “Methylomicrobium alcaliphilum 20Z”. Arch Microbiol 184(5):286–297

    Article  CAS  PubMed  Google Scholar 

  • Ro SY, Ross MO, Deng YW, Batelu S, Lawton TJ, Hurley JD, Stemmler TL, Hoffman BM, Rosenzweig AC (2018) From micelles to bicelles: effect of the membrane on particulate methane monooxygenase activity. J Biol Chem 293(27):10457–10465

    Article  PubMed  PubMed Central  Google Scholar 

  • Rozova ON, Khmelenina VN, Vuilleumier S, Trotsenko YA (2010) Characterization of recombinant pyrophosphate-dependent 6-phophofructokinase from halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. Res Microbiol 161(10):861–868

    Article  CAS  PubMed  Google Scholar 

  • Rozova ON, Khemelenina VN, Gavletdinova JZ, Mustakhimov II, Trotsenko YA (2015a) Acetate kinase-an enzyme of the postulated phosphoketolase pathway in Methylomicrobium alcaliphilum 20Z. Antonie Van Leeuwenhoek 108(4):965–974

    Article  CAS  PubMed  Google Scholar 

  • Rozova ON, Khmelenia VN, Bocharova KA, Mustakhimov II, Trotsenko YA (2015b) Role of NAD+-dependent malate dehydrogenase in the metabolism of Methylomicrobium alcaliphilum 20Z and Methylosinus trichosporium OB3b. Microorganisms 3(1):47–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozova ON, But SY, Khmelenina VN, Reshetnikov AS, Mustakhimov II, Trotsenko YA (2017) Characterization of two recombinant 3-hexulose-6-phophate synthases from the halotolerant obligate methanotroph Methylomicrobium alcaliphilum 20Z. Biochemistry 82(2):176–185

    CAS  PubMed  Google Scholar 

  • Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531

    Article  CAS  PubMed  Google Scholar 

  • Sharp CE, Smirnova AV, Kalyuzhnaya MG, Bringel F, Hirayama H, Jetten MS, Khmelenina VN, Klotz MG, Knief C, Kyrpides N, Op den Camp HJ, Reshetnikov AS, Sakai Y, Shapiro N, Trotsenko YA, Vuilleumier S, Woyke T, Dunfield PF (2015) Draft genome sequence of the moderately halophilic methanotroph Methylohalobius crimeensis strain 10Ki. Genome Announc 3(3):e00644-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Shchukin VN, Khmelenina VN, Eshinimayev BT, Suzina NE, Trotsenko YA (2011) Primary characterization of dominant cell surface proteins of halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. Microbiology 80(5):595–605

    Article  CAS  PubMed  Google Scholar 

  • Shindell D, Kuylenstierna JCI, Vignati E, Dingenen R, Amann M, Klimont Z, Anenberg S, Muller N, Janssens-Maenhout G, Raes F, Schwartz J, Faluvegi G, Pozzoli L, Kupiainen K, Höglund-Isaksson L, Emberson L, Streets D, Ramanathan V, Hicks K, Oanh NT, Milly G, Williams M, Demkine V, Fowler D (2012) Simultaneously mitigating near-term climate change and improving human health and food security. Science 335(6065):183–189

    Article  CAS  PubMed  Google Scholar 

  • Sieburth JM, Johnson PW, Eberhardt MA, Sieracki ME, Lidstrom M, Laux D (1987) The first methane-oxidizing bacterium from the upper mixing layer of the deep ocean: Methylomonas pelagica sp. nov. Curr Microbiol 14(5):285–293

    Article  CAS  Google Scholar 

  • Sleytr WB, Sara M (1997) Bacterial and archaeal S-layer proteins: structure-function relationships and their biotechnological applications. Trends Biotechnol 15(1):20–26

    Article  CAS  PubMed  Google Scholar 

  • Song J, Cho KK, Lee KS, La YH, Kalyuzhnaya M (2016) Method for producing isoprene using recombinant halophilic methanotroph. Patent no. US9994869B2

    Google Scholar 

  • Sorokin DY, Jones BE, Kuenen JG (2000) An obligate methylotrophic, methane-oxidizing Methylomicrobium species form a highly alkaline environment. Extremophiles 4(3):145–155

    Article  CAS  PubMed  Google Scholar 

  • Sorokin DY, Gorlenko VM, Namsaraev BB, Namsaraev ZB, Lysenko AM, Eshinimaev BT, Khmelenina VN, Trotsenko YA, Kuenen JG (2004) Prokaryotic communities of the north-eastern Mongolian soda lakes. Hydrobiologia 522(1–3):235–248

    Article  Google Scholar 

  • Strong PJ, Xie S, Clarke WP (2015) Methane as a resource: can the methanotrophs add value? Environ Sci Technol 49(7):4001–4018

    Article  CAS  PubMed  Google Scholar 

  • Strong PJ, Kalyuzhnaya M, Silverman J, Clarke WP (2016) A methanotroph-based biorefinery: potential scenarios for generating multiple products from a single fermentation. Bioresour Technol 215:314–323

    Article  CAS  PubMed  Google Scholar 

  • Sydlik U, Gallitz I, Albrecht C, Abel J, Krutmann J, Unfried K (2009) The compatible solute ectoine protects against nanoparticle-induced neutrophilic lung inflammation. Am J Respir Crit Care Med 180(1):29–35

    Article  CAS  PubMed  Google Scholar 

  • Syu MJ (2001) Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 55(1):10–18

    Article  CAS  PubMed  Google Scholar 

  • Tavormina PL, Hatzenpichler R, McGlynn S, Chadwick G, Dawson KS, Cannon SA, Orphan VJ (2015) Methyloprofundus sedimenti gen. nov., sp. nov., an obligate methanotroph from ocean sediment belonging to the ‘deep sea-1’ clade of marine methanotrophs. Int J Syst Evol Microbiol 65:251–259

    Article  CAS  PubMed  Google Scholar 

  • Trotsenko YA, Khmelenina VN (2002) The biology and osmoadaptation of haloalkaliphlic methanotrophs. Microbiology 71(2):123–132

    Article  CAS  Google Scholar 

  • Tsubota J, Eshinimaev BT, Khmelenina VN, Trotsenko YA (2005) Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. Int J Syst Evol Microbiol 55:1877–1884

    Article  CAS  PubMed  Google Scholar 

  • Unfried K, Kramer U, Sydlik U, Autengruber A, Bilstein A, Stolz S, Marini A, Schikowski T, Keymel S, Krutmann J (2016) Reduction of neutrophilic lung inflammation by inhalation of the compatible solute ectoine: a randomized trial with elderly individuals. Int J Chron Obstruct Pulmon Dis 11:2573–2583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuilleumier S, Khmelenina VN, Bringel F, Reshetnikov AS, Lajus A, Mangenot S, Rouy Z, Op den Camp HJ, Jetten MS, Dispirito AA, Dunfield P, Klotz MG, Semrau JD, Stein LY, Barbe V, Médigue C, Trotsenko YA, Kalyuzhnaya MG (2012) Genome sequence of the haloalkaliphilic methanotrophic bacterium Methylomicrobium alcaliphilum 20Z. J Bacteriol 194(2):551–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wise MG, McArthur JV, Shimkets LJ (2001) Methylosarcina fibrata gen. nov., sp. nov. and Methylosarcina quisquiliarum sp. nov., novel type I methanotrophs. Int J Syst Evol Microbiol 51:611–621

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Chu F, Puri AW, Fu Y, Lidstrom ME (2016) Electroporation-based genetic manipulation in type I methanotrophs. Appl Environ Microbiol 82:2062–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zavarzin GA, Zhilina TN, Kevbrin VV (1999) The alkaliphilic microbial community and its functional diversity. Microbiology 68(5):503–552

    CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the DOE under FOA DE-FOA-0001085 and by NSF-CBET award 1605031. Authors thank David Collins for providing EM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina G. Kalyuzhnaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nariya, S., Kalyuzhnaya, M.G. (2019). Diversity, Physiology, and Biotechnological Potential of Halo(alkali)philic Methane-Consuming Bacteria . In: Lee, E. (eds) Methanotrophs. Microbiology Monographs, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-23261-0_5

Download citation

Publish with us

Policies and ethics