Skip to main content

Perspectives in the Current and Future Use of Augmented Reality Visualization in Thoracic Surgery and Pulmonary Interventions

  • Chapter
Virtual Endoscopy and 3D Reconstruction in the Airways

Abstract

The purpose of this chapter is to review the role of virtual bronchoscopy and 3-D imaging of the airways in clinical practice.

Virtual bronchoscopy generates high-definition tracheobronchial tree pictures and endobronchial views which mimic traditional bronchoscopy.

Patient preparation for surgical intervention takes time and effort and for the anaesthetist the most important is airway assessment.

Virtual bronchoscopy (VB) is an animated 3-D CT post-processing practice that generates high-definition tracheobronchial tree photos and endobronchial views that mimic standard bronchoscopy reports. The most important limitations of fibre-optic bronchoscopy being inability to advance beyond the 4–5 (dichotomous) division and its invasiveness on high-risk patients raised a strain to figure out a non-invasive technique.

Inhalational injury produces mucosal changes that can’t be easily detected by ordinary CT in the acute phase of injury when there is no airway narrowing or obstruction. Evaluation of how reliable is multi-detector computed tomography (VB) to detect such injury is a new emerging modality in this field.

Also VB is utilized as a quick guide for transbronchial needle aspiration biopsy. It provides higher assurance in the examination of little nodes and nodes in very difficult places; in addition it reduces technique moment.

Virtual bronchoscopic navigation had been used before closing the endobronchial fistula in postoperative bronchopleural fistula. VB is an important diagnostic screening tool in postoperative lung transplantation patients to diagnose any airflow obstruction by using the correlation between VB and pulmonary functions tests.

Data sets from MDCT that are used for VB can also be used to obtain volumetric data that can be utilized to produce in vivo airway casts and anatomic 3D models that can be used for 3D printing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Honnef D, Wildberger JE, Das M, et al. Value of virtual trachea-bronchoscopy and bronchography from 16-slice multidetector-row helical CT for assessment of suspected tracheobronchial stenosis in children. Eur Radiol. 2006;16:1684–91.

    Article  Google Scholar 

  2. Fetita CI, Preteux F, Beigelman-Aubry C, Grenier P. Pulmonary airways: 3-D reconstruction from MDCT and clinical investigation. IEEE Trans Med Imaging. 2004;23:1353–64.

    Article  Google Scholar 

  3. Adamczyk M, Tomaszewski G, Naumczyk P, Kluczewska E, Walecki J. Usefulness of computed tomography virtual bronchoscopy in the evaluation of bronchi divisions. Pol J Radiol. 2013;78(1):30–41.

    Article  Google Scholar 

  4. Kwon HP, Zanders TB, Regn DD, Burkett SE, Batchinsky AI. Comparison of virtual bronchoscopy to fiber-optic bronchoscopy for assessment of inhalation injury severity. Burns. 2014;40(7):1308–15.

    Article  Google Scholar 

  5. Englmeier KH, Seemann MD. Multimodal virtual bronchoscopy using PET/CT images. Comput Aided Surg Mar. 2008;13(2):106–13.

    Article  Google Scholar 

  6. Hoppe H, Dinkel HP, Walder B, von Allmen G, Gugger M, Vock P. Grading airway stenosis down to the segmental level using virtual bronchoscopy. Chest. 2004;125:704–11.

    Article  Google Scholar 

  7. Koşucu P, Ahmetoğlu A, Koramaz I, Orhan F, Özdemir O, Dinç H, Ökten A, Gümele HR. Low-dose MDCT and virtual bronchoscopy in pediatric patients with foreign body aspiration. Am J Roentgenol. 2004;183:1771–7.

    Article  Google Scholar 

  8. Finkelstein SE, Summers RM, Nguyen DM, Stewart JH, Tretler JA, Schrump DS. Virtual bronchoscopy for evaluation of malignant tumors of the thorax. J Thorac Cardiovasc Surg. 2002;123:967–72.

    Article  Google Scholar 

  9. Walker PF, Buehner MF, Wood LA, Boyer NL, Driscoll IR, Lundy JB, Cancio LC, Chung KK. Diagnosis and management of inhalation injury: an updated review. Crit Care. 2015;19:351.

    Article  Google Scholar 

  10. Gore MA, Joshi AR, Nagarajan G, Iyer SP, Kulkarni T, Khandelwal A. Virtual bronchoscopy for diagnosis of inhalation injury in burnt patients. Burns. 2004;30(2):165–8.

    Article  Google Scholar 

  11. Finkelstein SE, Schrump DS, Nguven DM, Hewitt SM, Kunsl TF, Summers RM. Comparative evaluation of super high-resolution CT scan and virtual bronchoscopy for the detection of tracheobronchial malignancies. Chest. 2003;124:1834–40.

    Article  Google Scholar 

  12. Liewald F, Lang G, Fleiter T, Sokiranski R, Halter G, Orend KH. Comparison of virtual and fiberoptic bronchoscopy. Thorac Cardiovasc Surg. 1998;46:361–4.

    Article  CAS  Google Scholar 

  13. Moriwaki Y, Sugiyama M, Matsuda G, et al. Usefulness of the 3-D-tracheography. World J Surg. 2005;29:102–5.

    Article  Google Scholar 

  14. McAdams HP, Goodman PC, Kussin P. Virtual bronchoscopy for directing transbronchial needle aspiration of hilar and mediastinal lymph nodes: a pilot study. AJR. 1998;170:1361–4.

    Article  CAS  Google Scholar 

  15. Marescaux J, Diana M. Next step in minimally invasive surgery: hybrid image-guided surgery. J Paediatr Surg. 2015;50(1):30–6.

    Article  Google Scholar 

  16. Sultan TA, van As AB. Review of tracheobronchial foreign body aspiration in the south African paediatric age group. J Thorac Dis. 2016;8(12):3787–96.

    Article  Google Scholar 

  17. Godoy MC, Saldana DA, Rao PP, Vlahos I, Naidich DP, Benveniste MF, Erasmus JJ, Marom EM, Ost D. Multidetector CT evaluation of airway stents: what the radiologist should know. Radiographics. 2014;34(7):1793–806. https://doi.org/10.1148/rg.347130063.

    Article  PubMed  Google Scholar 

  18. Gill RR, Poh AC, Camp PC, Allen JM. MDCT evaluation of central airway and vascular complications of lung transplantation. Am J Roentgenol. 2008;191(4):1046–56.

    Article  Google Scholar 

  19. Shinagawa N, Yamazaki K, Onodera Y, et al. CT- guided transbronchial biopsy using an ultrathin bronchoscope with virtual bronchoscopic navigation. Chest. 2004;125:1138–43.

    Article  Google Scholar 

  20. Yanagiya M, Matsumoto J, Nagano M, Kusakabe M, Matsumoto Y, Furukawa R, Ohara S, Usui K. Endoscopic bronchial occlusion for postoperative persistent bronchopleural fistula with computed tomography fluoroscopy guidance and virtual bronchoscopic navigation.A case report. Medicine (Baltimore). 2018;97(7):e9921.

    Article  Google Scholar 

  21. Shitrit D, Valdsislav P, Grubstein A, Bendayan D, Cohen M, Kramer MR. Accuracy of virtual bronchoscopy for grading tracheobronchial stenosis∗ correlation with pulmonary function test and Fiberoptic bronchoscopy. Chest. 2005;128(5):3545.

    Article  Google Scholar 

  22. Cho EN, Haam SJ, Kim SY, Chang YS, Paik HC. Anastomotic airway complications after lung transplantation. Yonsei Med J. 2015;56(5):1372–8.

    Article  Google Scholar 

  23. Luecke K, Trujillo C, Ford J, Decker S, Pelaez A, Hazelton TR, Rojas CA. Anastomotic airway complications after lung transplant clinical, bronchoscopic and CT correlation. J Thorac Imaging. 2016;31:W62–71.

    Article  Google Scholar 

  24. Horton KM, Horton MR, Fishman EK. Advanced visualization of airways with 64-MDCT: 3-D mapping and virtual bronchoscopy. Am J Roentgenol. 2007;189(6):1387–96.

    Article  Google Scholar 

  25. Rezk-Salama C, Kolb A. Opacity peeling for direct volume rendering. Comp Graph Forum. 2006;25(3):597–606.

    Article  Google Scholar 

  26. Wacker FK, Vogt S, Khamene A, Jesberger JA, Nour SG, Elgort DR, Sauer F, Duerk JL, Lewin JS. An augmented reality system for MRI image guided needle biopsy: initial results in a swine model. Radiology. 2006;238(2):497–504.

    Article  Google Scholar 

  27. Jacob RE, Colby SM, Kabilan S, Einstein DR, Carson JP. In situ casting and imaging of the rat airway tree for accurate 3D reconstruction. Exp Lung Res. 2013;39:249–57. https://doi.org/10.3109/01902148.2013.801535.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cheng GZ, Folch E, Wilson A, et al. 3D printing and personalized airway stents. Pulm Ther. 2017;3:59–66. https://doi.org/10.1007/s41030-016-0026-y.

    Article  Google Scholar 

  29. Van de Moortele T, Wendt CH, Coletti F. Morphological and functional properties of the conducting human airways investigated by in vivo computed tomography and in vitro MRI. J Appl Physiol. 2017;124:400–13. https://doi.org/10.1152/japplphysiol.00490.2017.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Elarref .

Editor information

Editors and Affiliations

9.1 Electronic Supplementary Material

Virtual bronchoscopy and VRT movies as a non-invasive method that allows accurate grading of tracheobronchial stenosis (AVI 28903 kb)

MDCT scan reveals absent left lung, obliterated left main bronchus with nippling, absent left pulmonary artery and significant hyperinflation of the right lung crossing to the left through the anterior mediastinum (AVI 6050 kb)

MDCT scan reveals absent left lung, obliterated left main bronchus with nippling, absent left pulmonary artery and significant hyperinflation of the right lung crossing to the left through the anterior mediastinum (AVI 21999 kb)

MDCT scan reveals absent left lung, obliterated left main bronchus with nippling, absent left pulmonary artery and significant hyperinflation of the right lung crossing to the left through the anterior mediastinum (AVI 2319 kb)

MDCT scan reveals absent left lung, obliterated left main bronchus with nippling, absent left pulmonary artery and significant hyperinflation of the right lung crossing to the left through the anterior mediastinum (AVI 9459 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Elarref, M.A., Aljabary, A., Shallik, N.A., Abbas, M., Elarif, N. (2019). Perspectives in the Current and Future Use of Augmented Reality Visualization in Thoracic Surgery and Pulmonary Interventions. In: Shallik, N.A., Moustafa, A.H., Marcus, M.A.E. (eds) Virtual Endoscopy and 3D Reconstruction in the Airways. Springer, Cham. https://doi.org/10.1007/978-3-030-23253-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23253-5_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23252-8

  • Online ISBN: 978-3-030-23253-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics