Skip to main content

Three-Dimensional Printing and Its Implication on Airway Management

  • Chapter
  • 448 Accesses

Abstract

The advancement of rapid manufacturing technologies known as 3-D printing is transforming several medical practices and solutions. In contrast to traditional mass production technologies of manufacturing, 3-D printing prevails in terms of low-volume production cost saving, introducing flexibility and personalization. This means that the manufacturer can change the design of the produced parts at will, without the time and effort associated with tooling change in other production methods. Furthermore, 3-D printing has a better ability of producing models with complex geometries, such as the patient-specific anatomical models.

In its core, 3-D printing is an automated manufacturing technique that aims to reduce the human manual labor. Operation of 3-D printers is rarely associated with safety concerns and has a small footprint in comparison to other high-volume methods. This introduced to using 3-D printing in the medical field and improved accessibility to research and development of patient-specific solutions, especially to address solutions for rare pathologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tack P, Victor J, Gemmel P, Annemans L. 3-D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online. 2016;15(1):115.

    Article  Google Scholar 

  2. Chao I, Young J, Coles-Black J, Chuen J, Weinberg L, Rachbuch C. The application of three-dimensional printing technology in anaesthesia: a systematic review. Anaesthesia. 2017;72(5):641–50.

    Article  CAS  Google Scholar 

  3. Dodziuk H. Applications of 3-D printing in healthcare. Polish J Cardio-thoracic Surg. 2016;13(3):283.

    Article  Google Scholar 

  4. Chia HN, Wu BM. Recent advances in 3-D printing of biomaterials. J Biol Eng. 2015;9(1):4.

    Article  Google Scholar 

  5. Tappa K, Jammalamadaka U. Novel biomaterials used in medical 3-D printing techniques. J Funct Biomater. 2018;9(1):17.

    Article  Google Scholar 

  6. Dizon JRC, Espera AH, Chen Q, Advincula RC. Mechanical characterization of 3-D-printed polymers. Additive Manuf; 2017.

    Google Scholar 

  7. Gibson I, Rosen DW, Stucker B. Additive manufacturing technologies. Berlin: Springer; 2010.

    Book  Google Scholar 

  8. de Blas Romero A, Lantada AD, Schwentenwein M, Jellinek C, Homa J. Lithogeraphy-based Ceramic Manufacture.

    Google Scholar 

  9. Loughborough University Research Group. 7 Categories of additive manufacturing. http://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/.

  10. Gibson I, Rosen D, Stucker B. Directed energy deposition processes. In: Additive manufacturing technologies. New York, NY: Springer; 2015.

    Chapter  Google Scholar 

  11. Gay P, Blanco D, Pelayo F, Noriega A, Fernández P. Analysis of factors influencing the mechanical properties of flat PolyJet manufactured parts. Procedia Eng. 2015;132:70–7.

    Article  Google Scholar 

  12. Pedersen TH, Gysin J, Wegmann A, Osswald M, Ott SR, Theiler L, Greif R. A randomised, controlled trial evaluating a low cost, 3-D-printed bronchoscopy simulator. Anaesthesia. 2017;72(8):1005–9.

    Article  CAS  Google Scholar 

  13. Vukicevic M, Mosadegh B, Min JK, Little SH. Cardiac 3-D printing and its future directions. JACC Cardiovasc Imaging. 2017;10(2):171–84.

    Article  Google Scholar 

  14. Giannopoulos AA, Mitsouras D, Yoo SJ, Liu PP, Chatzizisis YS, Rybicki FJ. Applications of 3-D printing in cardiovascular diseases. Nat Rev Cardiol. 2016;13(12):701.

    Article  CAS  Google Scholar 

  15. Maragiannis D, Jackson MS, Igo SR, Schutt RC, Connell P, Grande-Allen J, Little SH. Replicating patient-specific severe aortic valve stenosis with functional 3-D modeling. Circ Cardiovasc Imaging. 2015;8(10):e003626.

    Article  Google Scholar 

  16. Morrison RJ, et al. Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci Transl Med. 2015;7(285):285ra64–4.

    Google Scholar 

  17. Wei R, Guo W, Ji T, Zhang Y, Liang H. One-step reconstruction with a 3-D-printed, custom-made prosthesis after total en bloc sacrectomy: a technical note. Eur Spine J. 2017;26(7):1902–9.

    Article  Google Scholar 

  18. Kim D, Lim JY, Shim KW, Han JW, Yi S, Yoon DH, Shin DA. Sacral reconstruction with a 3-D-printed implant after hemisacrectomy in a patient with sacral osteosarcoma: 1-year follow-up result. Yonsei Med J. 2017;58(2):453–7.

    Article  Google Scholar 

  19. Wang S, Wang L, Liu Y, Ren Y, Jiang L, Li Y, Li H. 3-D printing technology used in severe hip deformity. Exp Ther Med. 2017;14(3):2595–9.

    Article  Google Scholar 

  20. Liang H, Ji T, Zhang Y, Wang Y, Guo W. Reconstruction with 3-D-printed pelvic endoprostheses after resection of a pelvic tumour. Bone Joint J. 2017;99(2):267–75.

    Article  Google Scholar 

  21. Morrison, Robert J., et al. Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Science translational medicine 2015;7.285 285ra64-285ra64.

    Google Scholar 

  22. Maragiannis D, Jackson MS, Igo SR, Schutt RC, Connell P, Grande-Allen J, Little SH. Replicating patient-specific severe aortic valve stenosis with functional 3-D modeling. Circ Cardiovasc Imaging. 2015;10:e003626.

    Google Scholar 

  23. Guibert N, Didier A, Moreno B, Mhanna L, Brouchet L, Plat G, Mazieres J. Treatment of post-transplant complex airway stenosis with a three-dimensional, computer-assisted customized airway stent. Am J Respir Crit Care Med. 2017;195(7):e31–3.

    Article  Google Scholar 

  24. Mills D, Tappa K, Jammalamadaka U, Weisman J, Woerner J. The use of 3-D printing in the fabrication of nasal stents. Inventions. 2017;3(1):1.

    Article  Google Scholar 

  25. STI Laser, Stent manufacturing process. https://​www.sti-laser.com/products/stents/stent-manufacturing-process/.

  26. Van Lith R, Baker E, Ware H, Yang J, Farsheed AC, Sun C, Ameer G. 3-D-printing strong high-resolution antioxidant bioresorbable vascular stents. Adv Mater Technol. 2016;1(9):1600138.

    Article  Google Scholar 

  27. Sander I, Liepert T, Doney E, Leevy W, Liepert D. Patient education for endoscopic sinus surgery: preliminary experience using 3-D-printed clinical imaging data. J Funct Biomater. 2017;8(2):13.

    Article  Google Scholar 

  28. Bauermeister AJ, Zuriarrain A, Newman MI. Three- dimensional printing in plastic and reconstructive surgery: a systematic review. Ann Plast Surg. 2016;77(5):569–76.

    Article  CAS  Google Scholar 

  29. Youssef RF, Spradling K, Yoon R, Dolan B, Chamberlin J, Okhunov Z, Landman J. Applications of three-dimensional printing technology in urological practice. BJU Int. 2015;116(5):697–702.

    Article  Google Scholar 

  30. Zhong N, Zhao X. 3-D printing for clinical application in otorhinolaryngology. Eur Arch Otorhinolaryngol. 2017;274(12):4079–89.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser Al-Hamidi .

Editor information

Editors and Affiliations

11.1 Electronic Supplementary Material

Shows 3-D printed prototype and develop new medical tools of video-laryngoscopy (Shalliscope) for endotracheal intubation (MP4 41340 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Al-Hamidi, Y., Baobeid, A., Shallik, N.A. (2019). Three-Dimensional Printing and Its Implication on Airway Management. In: Shallik, N.A., Moustafa, A.H., Marcus, M.A.E. (eds) Virtual Endoscopy and 3D Reconstruction in the Airways. Springer, Cham. https://doi.org/10.1007/978-3-030-23253-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23253-5_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23252-8

  • Online ISBN: 978-3-030-23253-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics