Skip to main content

Lemma Discovery for Induction

A Survey

  • Conference paper
  • First Online:
Book cover Intelligent Computer Mathematics (CICM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11617))

Included in the following conference series:

Abstract

Automating proofs by induction can be challenging, not least because proofs might need auxiliary lemmas, which themselves need to be proved by induction. In this paper we survey various techniques for automating the discovery of such lemmas, including both top-down techniques attempting to generate a lemma from an ongoing proof attempt, as well as bottom-up theory exploration techniques trying to construct interesting lemmas about available functions and datatypes, thus constructing a richer background theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A small program executing one or several proof steps automatically.

References

  1. Aderhold, M.: Improvements in formula generalization. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 231–246. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73595-3_16

    Chapter  Google Scholar 

  2. Aubin, R.: Mechanizing structural induction. Ph.D. thesis, University of Edinburgh (1976)

    Google Scholar 

  3. Boyer, R.S., Moore, J.S.: A Computational Logic. ACM Monographs in Computer Science (1979)

    MATH  Google Scholar 

  4. Buchberger, B.: Theory exploration with Theorema. Analele Universitatii Din Timisoara ser. Mat.-Informatica 38(2), 9–32 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Buchberger, B., et al.: Theorema: towards computer-aided mathematical theory exploration. J. Appl. Log. 4(4), 470–504 (2006). Towards Computer Aided Mathematics

    Article  MathSciNet  Google Scholar 

  6. Bundy, A.: The use of explicit plans to guide inductive proofs. In: Lusk, E., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 111–120. Springer, Heidelberg (1988). https://doi.org/10.1007/BFb0012826

    Chapter  Google Scholar 

  7. Bundy, A., Basin, D., Hutter, D., Ireland, A.: Rippling: Meta-Level Guidance for Mathematical Reasoning. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  8. Bundy, A., van Harmelen, F., Horn, C., Smaill, A.: The OYSTER-CLAM system. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 647–648. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52885-7_123

    Chapter  Google Scholar 

  9. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of Haskell programs. In: Proceedings of ICFP, pp. 268–279 (2000)

    Article  Google Scholar 

  10. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Automating inductive proofs using theory exploration. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 392–406. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_27

    Chapter  Google Scholar 

  11. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: TIP: tons of inductive problems. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS (LNAI), vol. 9150, pp. 333–337. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20615-8_23

    Chapter  Google Scholar 

  12. Claessen, K., Smallbone, N., Hughes, J.: QuickSpec: guessing formal specifications using testing. In: Fraser, G., Gargantini, A. (eds.) TAP 2010. LNCS, vol. 6143, pp. 6–21. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13977-2_3

    Chapter  Google Scholar 

  13. Constable, R.L., Allen, S.F., Bromley, H.M.: Implementing Mathematics with the nuPRL Development System. Prentice Hall, Upper Saddle River (1986)

    Google Scholar 

  14. Cruanes, S.: Superposition with structural induction. In: Dixon, C., Finger, M. (eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 172–188. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66167-4_10

    Chapter  Google Scholar 

  15. Dixon, L., Fleuriot, J.: Higher order rippling in IsaPlanner. In: Slind, K., Bunker, A., Gopalakrishnan, G. (eds.) TPHOLs 2004. LNCS, vol. 3223, pp. 83–98. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30142-4_7

    Chapter  MATH  Google Scholar 

  16. Dixon, L., Johansson, M.: IsaPlanner 2: a proof planner in Isabelle. DReaM Technical report (System description) (2007)

    Google Scholar 

  17. Einarsdóttir, S.H., Johansson, M., Åman Pohjola, J.: Into the infinite - theory exploration for coinduction. In: Fleuriot, J., Wang, D., Calmet, J. (eds.) AISC 2018. LNCS (LNAI), vol. 11110, pp. 70–86. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99957-9_5

    Chapter  Google Scholar 

  18. Gauthier, T., Kaliszyk, C., Urban, J.: Initial experiments with statistical conjecturing over large formal corpora. In: Joint Proceedings of the FM4M, MathUI, and ThEdu Workshops, Doctoral Program, and Work in Progress at the Conference on Intelligent Computer Mathematics 2016 (CICM-WiP 2016). CEUR, vol. 1785, pp. 219–228. CEUR-WS.org (2016)

    Google Scholar 

  19. Heras, J., Komendantskaya, E., Johansson, M., Maclean, E.: Proof-pattern recognition and lemma discovery in ACL2. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 389–406. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5_27

    Chapter  MATH  Google Scholar 

  20. Hesketh, J.: Using middle out reasoning to guide inductive theorem proving. Ph.D. thesis, University of Edinburgh (1992)

    Google Scholar 

  21. Hummel, B.: An investigation of formula generalization heuristics for inductive proofs. Interner Bericht Nr, 6/87, Universität Karlsruhe (1987)

    Google Scholar 

  22. Ireland, A., Bundy, A.: Productive use of failure in inductive proof. J. Autom. Reasoning 16, 79–111 (1996)

    Article  MathSciNet  Google Scholar 

  23. Johansson, M.: Automated theory exploration for interactive theorem proving: an introduction to the hipster system. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017. LNCS, vol. 10499, pp. 1–11. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66107-0_1

    Chapter  MATH  Google Scholar 

  24. Johansson, M., Dixon, L., Bundy, A.: Dynamic rippling, middle-out reasoning and lemma discovery. In: Siegler, S., Wasser, N. (eds.) Verification, Induction, Termination Analysis. LNCS (LNAI), vol. 6463, pp. 102–116. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17172-7_6

    Chapter  Google Scholar 

  25. Johansson, M., Dixon, L., Bundy, A.: Conjecture synthesis for inductive theories. J. Autom. Reasoning 47(3), 251–289 (2011)

    Article  MathSciNet  Google Scholar 

  26. Johansson, M., Rosén, D., Smallbone, N., Claessen, K.: Hipster: integrating theory exploration in a proof assistant. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 108–122. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08434-3_9

    Chapter  Google Scholar 

  27. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with flyspeck. J. Autom. Reasoning 53(2), 173–213 (2014)

    Article  MathSciNet  Google Scholar 

  28. Kapur, D., Subramaniam, M.: Lemma discovery in automating induction. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 538–552. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61511-3_112

    Chapter  Google Scholar 

  29. Kaufmann, M., Panagiotis, M., Moore, J.S.: Computer-Aided Reasoning: An Approach. Kluwer Academic Publishers, Boston (2000)

    Book  Google Scholar 

  30. Leino, K.R.M.: Automating induction with an SMT solver. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 315–331. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27940-9_21

    Chapter  Google Scholar 

  31. Maclean, E.: Generalisation as a critic. Master’s thesis, University of Edinburgh (1999)

    Google Scholar 

  32. McCasland, R., Bundy, A., Autexier, S.: Automated discovery of inductive theorems. In: Matuszewski, R., Rudnicki, P. (eds.) From Insight to Proof: Festschrift in Honor of A. Trybulec (2007)

    Google Scholar 

  33. McCasland, R., Bundy, A., Smith, P.: MATHsAiD: automated mathematical theory exploration. Appl. Intell. 47(3), 585–606 (2017)

    Article  Google Scholar 

  34. Montano-Rivas, O., McCasland, R., Dixon, L., Bundy, A.: Scheme-based theorem discovery and concept invention. Expert Syst. Appl. 39(2), 1637–1646 (2012)

    Article  Google Scholar 

  35. Moore, J.S., Wirth, C.-P.: Automation of mathematical induction as part of the history of logic. IfCoLog J. Log. Their Appl. 4(5), 1505–1634 (2014). SEKI-Report SR-2013-02

    Google Scholar 

  36. Nagashima, Y., Parsert, J.: Goal-oriented conjecturing for Isabelle/HOL. In: Rabe, F., Farmer, W.M., Passmore, G.O., Youssef, A. (eds.) CICM 2018. LNCS (LNAI), vol. 11006, pp. 225–231. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96812-4_19

    Chapter  Google Scholar 

  37. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL – A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

    Book  MATH  Google Scholar 

  38. Papapanagiotou, P., Fleuriot, J.: The Boyer-Moore waterfall model revisited (2011). https://arxiv.org/pdf/1808.03810.pdf

  39. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical link between automatic and interactive theorem provers. In: IWIL-2010 (2010)

    Google Scholar 

  40. Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 80–98. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46081-8_5

    Chapter  Google Scholar 

  41. Smallbone, N., Johansson, M., Claessen, K., Algehed, M.: Quick specifications for the busy programmer. J. Funct. Program. 27, e18 (2017)

    Google Scholar 

  42. Sonnex, W., Drossopoulou, S., Eisenbach, S.: Zeno: an automated prover for properties of recursive data structures. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 407–421. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5_28

    Chapter  MATH  Google Scholar 

  43. Sonnex, W.: Fixed point promotion: taking the induction out of automated induction. Technical report UCAM-CL-TR-905, University of Cambridge, Computer Laboratory, March 2017

    Google Scholar 

  44. Wand, D.: Superposition: types and induction. Ph.D. thesis, Saarland University (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moa Johansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Johansson, M. (2019). Lemma Discovery for Induction. In: Kaliszyk, C., Brady, E., Kohlhase, A., Sacerdoti Coen, C. (eds) Intelligent Computer Mathematics. CICM 2019. Lecture Notes in Computer Science(), vol 11617. Springer, Cham. https://doi.org/10.1007/978-3-030-23250-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23250-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23249-8

  • Online ISBN: 978-3-030-23250-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics