Advertisement

Regulated Tree Automata

  • Henning FernauEmail author
  • Martin Vu
Conference paper
  • 151 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11612)

Abstract

Regulated rewriting is one of the classical areas in Formal Languages, as tree automata are a classical topic. Somewhat surprisingly, there have been no attempts so far to combine both areas. Here, we start this type of research, introducing regulated tree automata, proving in particular characterizations of the yields of such regulated automata.

Keywords

Regulated rewriting Graph control Tree automata Yield operation 

References

  1. 1.
    Bordihn, H., Fernau, H.: Accepting grammars with regulation. Int. J. Comput. Math. 53(1–2), 1–18 (1994).  https://doi.org/10.1080/00207169408804310CrossRefzbMATHGoogle Scholar
  2. 2.
    Comon, H., et al.: Tree Automata, Techniques and Applications (2007). http://tata.gforge.inria.fr/
  3. 3.
    Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, G.: Grammar Systems: A Grammatical Approach to Distribution and Cooperation. Gordon and Breach, Newark (1994). https://dl.acm.org/citation.cfm?id=561869zbMATHGoogle Scholar
  4. 4.
    Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. EATCS Monographs in Theoretical Computer Science, vol. 18. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  5. 5.
    Doner, J.: Tree acceptors and some of their applications. J. Comput. Syst. Sci. 4(5), 406–451 (1970).  https://doi.org/10.1016/S0022-0000(70)80041-1MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fernau, H., Bordihn, H.: Remarks on accepting parallel systems. Int. J. Comput. Math. 56, 51–67 (1995).  https://doi.org/10.1080/00207169508804387CrossRefzbMATHGoogle Scholar
  7. 7.
    Fernau, H.: Graph-controlled grammars as language acceptors. J. Autom. Lang. Comb., pp. 79–91. (1997).  https://doi.org/10.25596/jalc-1997-079CrossRefGoogle Scholar
  8. 8.
    Fernau, H.: Parallel grammars: a phenomenology. Grammars 6(1), 25–87 (2003).  https://doi.org/10.1023/A:1024087118762MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fernau, H.: Cooperating distributed tree automata. In: Bordihn, H., Kutrib, M., Truthe, B. (eds.) Languages Alive; Dassow Festschrift. LNCS, vol. 7300, pp. 75–85. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31644-9_5CrossRefGoogle Scholar
  10. 10.
    Fernau, H., Holzer, M., Bordihn, H.: Accepting multi-agent systems: the case of cooperating distributed grammar systems. Comput. Artif. Intell. 15, 123–139 (1996)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Freund, R., Kogler, M., Oswald, M.: A general framework for regulated rewriting based on the applicability of rules. In: Kelemen, J., Kelemenová, A. (eds.) Computation, Cooperation, and Life. LNCS, vol. 6610, pp. 35–53. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20000-7_5CrossRefGoogle Scholar
  12. 12.
    Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)zbMATHGoogle Scholar
  13. 13.
    Kallmeyer, L.: Parsing Beyond Context-Free Grammars. Cognitive Technologies. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14846-0CrossRefzbMATHGoogle Scholar
  14. 14.
    Meduna, A., Kolář, D.: Regulated pushdown automata. Acta Cybern. 14(4), 653–664 (2000). http://www.inf.u-szeged.hu/actacybernetica/edb/vol14n4/Meduna2000ActaCybernetica.xmlMathSciNetzbMATHGoogle Scholar
  15. 15.
    Meduna, A., Zemek, P.: Regulated Grammars and Automata. Springer, New York (2014).  https://doi.org/10.1007/978-1-4939-0369-6CrossRefzbMATHGoogle Scholar
  16. 16.
    Thatcher, J.W.: Characterizing derivation trees of context-free grammars through a generalization of finite automata theory. J. Comput. Syst. Sci. 1(4), 317–322 (1967).  https://doi.org/10.1016/S0022-0000(67)80022-9MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Vu, M.: Regulierte Grammatiken und regulierte Baumautomaten. Bachelorarbeit, Informatikwissenschaften, Universität Trier, Germany (2016)Google Scholar
  18. 18.
    Wood, D.: Bicolored digraph grammar systems. RAIRO Theor. Inform. Appl. 7(1), 45–52 (1973). http://www.numdam.org/article/M2AN_1973__7_1_45_0.pdf
  19. 19.
    Zetzsche, G.: On erasing productions in random context grammars. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 175–186. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14162-1_15CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.Universität Trier, FB IV—Abteilung Informatikwissenschaften, CIRTTrierGermany

Personalised recommendations