Advertisement

Descriptional Complexity of Matrix Simple Semi-conditional Grammars

  • Henning FernauEmail author
  • Lakshmanan Kuppusamy
  • Indhumathi Raman
Conference paper
  • 151 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11612)

Abstract

Matrix grammars are one of the first approaches ever proposed in regulated rewriting, prescribing that rules have to be applied in a certain order. Typical descriptional complexity measures incorporate the number of nonterminals or the length, i.e., the number of rules per matrix. In simple semi-conditional (SSC) grammars, the derivations are controlled by a permitting string or by a forbidden string associated to each rule. The maximum length i of permitting strings and the maximum length j of forbidden strings are called the degree of such grammars. Matrix SSC grammars (MSSC) put matrix grammar control on SSC rules. We consider the computational completeness of MSSC grammars with degrees (2, 1), (2, 0) and (3, 0). The results are important in the following aspects. (i) With permitting strings alone, it is unknown if SSC grammars are computational complete, while MSSC grammars describe \(\textsf {RE}\) even with severe further restrictions on their descriptional complexity. (ii) Matrix grammars with appearance checking with three nonterminals are computationally complete; however, the length is unbounded. With our constructions for MSSC grammars, we can even bound the length.

Keywords

Simple semi-conditional grammars Matrix grammars Computational completeness Geffert normal forms Descriptional complexity 

References

  1. 1.
    Ábrahám, S.: Some questions of phrase-structure grammars. I. Comput. Linguist. 4, 61–70 (1965)MathSciNetGoogle Scholar
  2. 2.
    Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. EATCS Monographs in Theoretical Computer Science, vol. 18. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  3. 3.
    Fernau, H., Freund, R., Oswald, M., Reinhardt, K.: Refining the nonterminal complexity of graph-controlled, programmed, and matrix grammars. J. Autom. Lang. Comb. 12(1/2), 117–138 (2007).  https://doi.org/10.25596/jalc-2007-117MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fernau, H., Kuppusamy, L., Oladele, R., Raman, I.: Improved descriptional complexity results for simple semi-conditional grammars (2019). Submitted to Fund. InformGoogle Scholar
  5. 5.
    Fernau, H., Kuppusamy, L., Oladele, R.O.: New nonterminal complexity results for semi-conditional grammars. In: Manea, F., Miller, R.G., Nowotka, D. (eds.) CiE 2018. LNCS, vol. 10936, pp. 172–182. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-94418-0_18CrossRefGoogle Scholar
  6. 6.
    Gazdag, Z., Tichler, K.: On the power of permitting semi-conditional grammars. In: Charlier, É., Leroy, J., Rigo, M. (eds.) DLT 2017. LNCS, vol. 10396, pp. 173–184. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-62809-7_12CrossRefGoogle Scholar
  7. 7.
    Geffert, V.: Normal forms for phrase-structure grammars. RAIRO Theor. Inform. Appl. 25, 473–498 (1991)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hauschildt, D., Jantzen, M.: Petri net algorithms in the theory of matrix grammars. Acta Inform. 31, 719–728 (1994).  https://doi.org/10.1007/BF01178731MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Masopust, T.: Formal models: regulation and reduction. Ph.D. thesis, Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic (2007)Google Scholar
  10. 10.
    Meduna, A., Gopalaratnam, M.: On semi-conditional grammars with productions having either forbidding or permitting conditions. Acta Cybern. 11(4), 307–323 (1994). http://www.inf.u-szeged.hu/actacybernetica/edb/vol11n4/Meduna1994ActaCybernetica.xmlMathSciNetzbMATHGoogle Scholar
  11. 11.
    Meduna, A., Kopeček, T.: Simple semi-conditional versions of matrix grammars with a reduced regulating mechanism. Comput. Inform. 23, 287–302 (2004). http://www.cai.sk/ojs/index.php/cai/article/view/430MathSciNetzbMATHGoogle Scholar
  12. 12.
    Meduna, A., Švec, M.: Reduction of simple semi-conditional grammars with respect to the number of conditional productions. Acta Cybern. 15(3), 353–360 (2002). http://www.inf.u-szeged.hu/actacybernetica/edb/vol15n3/Meduna2002ActaCybernetica.xmlMathSciNetzbMATHGoogle Scholar
  13. 13.
    Okubo, F.: A note on the descriptional complexity of semi-conditional grammars. Inform. Process. Lett. 110(1), 36–40 (2009).  https://doi.org/10.1016/j.ipl.2009.10.002MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Păun, G.: A variant of random context grammars: semi-conditional grammars. Theoret. Comput. Sci., pp. 1–17. (1985).  https://doi.org/10.1016/0304-3975(85)90056-8CrossRefGoogle Scholar
  15. 15.
    Vaszil, G.: On the descriptional complexity of some rewriting mechanisms regulated by context conditions. Theoret. Comput. Sci. 330, 361–373 (2005).  https://doi.org/10.1016/j.tcs.2004.06.032MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.Fachbereich 4 – Abteilung Informatikwissenschaften, CIRTUniversität TrierTrierGermany
  2. 2.School of Computer Science and EngineeringVITVelloreIndia
  3. 3.Department of Applied Mathematics and Computational SciencesPSG College of TechnologyCoimbatoreIndia

Personalised recommendations