Nondeterministic Right One-Way Jumping Finite Automata (Extended Abstract)

  • Simon Beier
  • Markus HolzerEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11612)


Right one-way jumping finite automata are deterministic devices that process their input in a discontinuous fashion. We generalise these devices to nondeterministic machines. More precisely we study the impact on the computational power of these machines when allowing multiple initial states and/or a nondeterministic transition function including spontaneous or \(\lambda \)-transitions. We show inclusion relations and incomparability results of the induced language families. Since for right-one way jumping devices the use of spontaneous transitions is subject to different natural interpretations, we also study this subject in detail, showing that most interpretations are equivalent to each other and lead to the same language families. Finally we also study inclusion and incomparability results to classical language families and to the families of languages accepted by finite automata with translucent letters.


  1. 1.
    Beier, S., Holzer, M.: Properties of right one-way jumping finite automata. In: Konstantinidis, S., Pighizzini, G. (eds.) DCFS 2018. LNCS, vol. 10952, pp. 11–23. Springer, Cham (2018). Scholar
  2. 2.
    Beier, S., Holzer, M.: Semi-linear lattices and right one-way jumping finite automata (extended abstract). In: Hospodár, M., Jirásková, G. (eds.) CIAA 2019. LNCS, vol. 11601. Springer, Cham (2019, to appear)Google Scholar
  3. 3.
    Beier, S., Holzer, M., Kutrib, M.: Operational state complexity and decidability of jumping finite automata. In: Charlier, É., Leroy, J., Rigo, M. (eds.) DLT 2017. LNCS, vol. 10396, pp. 96–108. Springer, Cham (2017). Scholar
  4. 4.
    Chigahara, H., Fazekas, S., Yamamura, A.: One-way jumping finite automata. Int. J. Found. Comput. Sci. 27(3), 391–405 (2016).
  5. 5.
    Fernau, H., Paramasivan, M., Schmid, M.L.: Jumping finite automata: characterizations and complexity. In: Drewes, F. (ed.) CIAA 2015. LNCS, vol. 9223, pp. 89–101. Springer, Cham (2015). Scholar
  6. 6.
    Fernau, H., Paramasivan, M., Schmid, M.L., Vorel, V.: Characterization and complexity results on jumping finite automata. Theoret. Comput. Sci. 679, 31–52 (2017).
  7. 7.
    Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Boston (1978)zbMATHGoogle Scholar
  8. 8.
    Lavado, G.J., Pighizzini, G., Seki, S.: Operational state complexity under parikh equivalence. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 294–305. Springer, Cham (2014). Scholar
  9. 9.
    Meduna, A., Zemek, P.: Jumping finite automata. Int. J. Found. Comput. Sci. 23(7), 1555–1578 (2012).
  10. 10.
    Nagy, B., Otto, F.: Finite-state acceptors with translucent letters. In: Bel-Enguix, G., Dahl, V., De La Puente, A.O. (eds.) Proceedings 1st Workshop on AI Methods for Interdisciplinary Research in Language and Biology (BILC 2011), pp. 3–13. SciTePress, Setúbal (2011).
  11. 11.
    Vorel, V.: On basic properties of jumping finite automata. Int. J. Found. Comput. Sci. 29(1), 1–16 (2018).
  12. 12.
    Yen, H.-C.: Petri nets and semilinear sets (extended abstract). In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 25–29. Springer, Cham (2016). Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.Institut für InformatikUniversität GiessenGiessenGermany

Personalised recommendations