Limited Automata: Properties, Complexity and Variants

  • Giovanni PighizziniEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11612)


Limited automata are single-tape Turing machines with severe rewriting restrictions. They have been introduced in 1967 by Thomas Hibbard, who proved that they have the same computational power as pushdown automata. Hence, they provide an alternative characterization of the class of context-free languages in terms of recognizing devices. After that paper, these models have been almost forgotten for many years. Only recently limited automata were reconsidered in a series of papers, where several properties of them and of their variants have been investigated. In this work we present an overview of the most important results obtained in these researches. We also discuss some related models and possible lines for future investigations.



I am very grateful to Luca Prigioniero for his valuable and helpful comments.


  1. 1.
    Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3), 16:1–16:43 (2009). Scholar
  2. 2.
    Chomsky, N., Schützenberger, M.: The algebraic theory of context-free languages. In: Braffort, P., Hirschberg, D. (eds.) Computer Programming and Formal Systems, Studies in Logic and the Foundations of Mathematics, vol. 35, pp. 118–161. Elsevier (1963).
  3. 3.
    Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47(3), 149–158 (1986). Errata: 302(1–3), 497–498 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ginsburg, S., Rice, H.G.: Two families of languages related to ALGOL. J. ACM 9(3), 350–371 (1962). Scholar
  5. 5.
    Guillon, B., Pighizzini, G., Prigioniero, L., Průša, D.: Two-way automata and one-tape machines. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp. 366–378. Springer, Cham (2018). Scholar
  6. 6.
    Guillon, B., Prigioniero, L.: Linear-time limited automata. Theoret. Comput. Sci. (2019, in press).
  7. 7.
    Hemaspaandra, L.A., Mukherji, P., Tantau, T.: Context-free languages can be accepted with absolutely no space overhead. Inform. Comput. 203(2), 163–180 (2005). Scholar
  8. 8.
    Hennie, F.C.: One-tape, off-line Turing machine computations. Inf. Control 8(6), 553–578 (1965)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hibbard, T.N.: A generalization of context-free determinism. Inf. Control 11(1/2), 196–238 (1967)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jančar, P., Mráz, F., Plátek, M.: Characterization of context-free languages by erasing automata. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992. LNCS, vol. 629, pp. 307–314. Springer, Heidelberg (1992). Scholar
  11. 11.
    Jancar, P., Mráz, F., Plátek, M.: A taxonomy of forgetting automata. In: Borzyszkowski, A.M., Sokołowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 527–536. Springer, Heidelberg (1993). Scholar
  12. 12.
    Jančar, P., Mráz, F., Plátek, M.: Forgetting automata and context-free languages. Acta Inform. 33(5), 409–420 (1996). Scholar
  13. 13.
    Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995). Scholar
  14. 14.
    Kutrib, M., Pighizzini, G., Wendlandt, M.: Descriptional complexity of limited automata. Inform. Comput. 259(2), 259–276 (2018). Scholar
  15. 15.
    Kutrib, M., Wendlandt, M.: On simulation cost of unary limited automata. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 153–164. Springer, Cham (2015). Scholar
  16. 16.
    Kutrib, M., Wendlandt, M.: Reversible limited automata. Fund. Inform. 155(1–2), 31–58 (2017). Scholar
  17. 17.
    Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL-recognition. In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 422–435. Springer, Heidelberg (1980). Scholar
  18. 18.
    Nasyrov, I.R.: Deterministic realization of nondeterministic computations with a low measure of nondeterminism. Cybernetics 27(2), 170–179 (1991). Scholar
  19. 19.
    Ogden, W.F., Ross, R.J., Winklmann, K.: An “interchange lemma” for context-free languages. SIAM J. Comput. 14(2), 410–415 (1985). Scholar
  20. 20.
    Okhotin, A.: Non-erasing variants of the Chomsky–Schützenberger theorem. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 121–129. Springer, Heidelberg (2012). Scholar
  21. 21.
    Otto, F.: Restarting automata and their relations to the Chomsky hierarchy. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 55–74. Springer, Heidelberg (2003). Scholar
  22. 22.
    Peckel, J.: On a deterministic subclass of context-free languages. In: Gruska, J. (ed.) MFCS 1977. LNCS, vol. 53, pp. 430–434. Springer, Heidelberg (1977). Scholar
  23. 23.
    Peckel, J.: A deterministic subclass of context-free languages. Časopis pro pěstování matematiky 103(1), 43–52 (1978). Scholar
  24. 24.
    Pighizzini, G.: Nondeterministic one-tape off-line Turing machines. J. Autom. Lang. Comb. 14(1), 107–124 (2009).
  25. 25.
    Pighizzini, G.: Two-way finite automata: old and recent results. Fund. Inform. 126(2–3), 225–246 (2013). Scholar
  26. 26.
    Pighizzini, G.: Guest column: one-tape Turing machine variants and language recognition. SIGACT News 46(3), 37–55 (2015). Scholar
  27. 27.
    Pighizzini, G.: Strongly limited automata. Fund. Inform. 148(3–4), 369–392 (2016). Scholar
  28. 28.
    Pighizzini, G., Pisoni, A.: Limited automata and regular languages. Internat. J. Found. Comput. Sci. 25(7), 897–916 (2014). Scholar
  29. 29.
    Pighizzini, G., Pisoni, A.: Limited automata and context-free languages. Fund. Inform. 136(1–2), 157–176 (2015). Scholar
  30. 30.
    Pighizzini, G., Prigioniero, L.: Limited automata and unary languages. Inform. Comput. 266, 60–74 (2019). Scholar
  31. 31.
    Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite automata. In: Lipton, R.J., Burkhard, W.A., Savitch, W.J., Friedman, E.P., Aho, A.V. (eds.) Proceedings 10th Annual ACM Symposium on Theory of Computing (STOC 1978), pp. 275–286. ACM (1978).
  32. 32.
    Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM J. Res. Dev. 3(2), 198–200 (1959). Scholar
  33. 33.
    Sloane, N.J.A.: The on-line encyclopedia of integer sequences.
  34. 34.
    Wagner, K.W., Wechsung, G.: Computational Complexity. D. Reidel Publishing Company, Dordrecht (1986)zbMATHGoogle Scholar
  35. 35.
    Wechsung, G.: Characterization of some classes of context-free languages in terms of complexity classes. In: Bečvář, J. (ed.) MFCS 1975. LNCS, vol. 32, pp. 457–461. Springer, Heidelberg (1975). Scholar
  36. 36.
    Wechsung, G., Brandstädt, A.: A relation between space, return and dual return complexities. Theoret. Comput. Sci. 9, 127–140 (1979). Scholar
  37. 37.
    Yamakami, T.: Behavioral strengths and weaknesses of various models of limited automata. In: Catania, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds.) SOFSEM 2019. LNCS, vol. 11376, pp. 519–530. Springer, Cham (2019). Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.Dipartimento di InformaticaUniversità degli Studi di MilanoMilanItaly

Personalised recommendations