Skip to main content

On the Decidability of Finding a Positive ILP-Instance in a Regular Set of ILP-Instances

  • Conference paper
  • First Online:
Descriptional Complexity of Formal Systems (DCFS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11612))

Included in the following conference series:

Abstract

The regular intersection emptiness problem for a decision problem P (\( int_{\mathrm {Reg}} \)(P)) is to decide whether a potentially infinite regular set of encoded P-instances contains a positive one. Since \( int_{\mathrm {Reg}} \)(P) is decidable for some NP-complete problems and undecidable for others, its investigation provides insights in the nature of NP-complete problems. Moreover, the decidability of the \( int_{\mathrm {Reg}} \)-problem is usually achieved by exploiting the regularity of the set of instances; thus, it also establishes a connection to formal language and automata theory. We consider the \( int_{\mathrm {Reg}} \)-problem for the well-known NP-complete problem Integer Linear Programming (ILP). It is shown that any DFA that describes a set of ILP-instances (in a natural encoding) can be reduced to a finite core of instances that contains a positive one if and only if the original set of instances did. This result yields the decidability of \( int_{\mathrm {Reg}} \)(ILP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A Dagstuhl seminar on ‘Graph Modification Problems’ was held in 2014 [2].

  2. 2.

    Note that this problem is only well-defined if it is clear how P is represented as a language, i. e., we have to define how P-instances are encoded as strings.

  3. 3.

    LOGSPACE and P also contain problems with undecidable \( int_{\mathrm {Reg}} \)-problem [23].

  4. 4.

    Our construction uses similar ideas as given in [11].

  5. 5.

    An extension \(\varvec{v'} \in \mathbb {Z}^n\) of \(\varvec{v} \in \mathbb {Z}^m\) with \(n >m\) coincides with \(\varvec{v}\) in all positions \(i \le m\).

  6. 6.

    The function \(\underset{{\text {lex}}}{\min }\) is used to make the definition clear. Any other element of the set could be used as well.

References

  1. Anderson, T., Loftus, J., Rampersad, N., Santean, N., Shallit, J.: Detecting palindromes, patterns and borders in regular languages. Inf. Comput. 207(11), 1096–1118 (2009). https://doi.org/10.1016/j.ic.2008.06.007

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H.L., Heggernes, P., Lokshtanov, D.: Graph modification problems (Dagstuhl seminar 14071). Dagstuhl Rep. 4(2), 38–59 (2014)

    Google Scholar 

  3. Cook, S.A.: The complexity of theorem-proving procedures. In: Harrison, M.A., Banerji, R.B., Ullman, J.D. (eds.) Proceedings of 3rd Annual ACM Symposium on Theory of Computing, STOC 1971, pp. 151–158. ACM, New York (1971)

    Google Scholar 

  4. Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with moves. ACM Trans. Algorithms 3(1), 2:1–2:19 (2007)

    Article  MathSciNet  Google Scholar 

  5. Eiben, E., Ganian, R., Knop, D., Ordyniak, S.: Unary integer linear programming with structural restrictions. In: Lang, J. (ed.) Proceedings of 27th International Joint Conference on Artificial Intelligence, IJCAI 2018, pp. 1284–1290 (2018)

    Google Scholar 

  6. Emde Boas van, P.: The Convenience of Tilings. Lecture Notes in Pure and Applied Mathematics, pp. 331–363. Marcel Dekker Inc., New York (1997)

    MATH  Google Scholar 

  7. Ganian, R., Ordyniak, S.: The complexity landscape of decompositional parameters for ILP. Artif. Intell. 257, 61–71 (2018)

    Article  MathSciNet  Google Scholar 

  8. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. PAA Pattern Anal. Appl. 13(1), 113–129 (2010). https://doi.org/10.1007/s10044-008-0141-y

    Article  MathSciNet  Google Scholar 

  9. Güler, D., Krebs, A., Lange, K.-J., Wolf, P.: Deciding regular intersection emptiness of complete problems for PSPACE and the polynomial hierarchy. In: Klein, S.T., Martín-Vide, C., Shapira, D. (eds.) LATA 2018. LNCS, vol. 10792, pp. 156–168. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77313-1_12

    Chapter  MATH  Google Scholar 

  10. Hladík, M.: Interval linear programming: a survey. In: Mann, Z.A. (ed.) Linear Programming – New Frontiers in Theory and Applications, Chap. 2, pp. 85–120. Nova Science Publishers, New York (2012)

    Google Scholar 

  11. Lange, K., Reinhardt, K.: Set automata. In: Combinatorics, Complexity and Logic; Proceeding, DMTCS 1996, pp. 321–329 (1996)

    Google Scholar 

  12. Lempitsky, V.S., Kohli, P., Rother, C., Sharp, T.: Image segmentation with a bounding box prior. In: ICCV 2009, pp. 277–284. IEEE Computer Society (2009)

    Google Scholar 

  13. Li, H.: Two-view motion segmentation from linear programming relaxation. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2007), pp. 1–8. IEEE Computer Society (2007)

    Google Scholar 

  14. Liu, Y., Wang, J., Guo, J.: An overview of kernelization algorithms for graph modification problems. Tsinghua Sci. Technol. 19(4), 346–357 (2014)

    Article  MathSciNet  Google Scholar 

  15. Rubtsov, A.A.: Regular realizability problems and regular languages. CoRR abs/1503.05879 (2015). http://arxiv.org/abs/1503.05879

  16. Rubtsov, A.A., Vyalyi, M.N.: Regular realizability problems and models of a generalized nondeterminism. CoRR abs/1105.5894 (2011). http://arxiv.org/abs/1105.5894

  17. Tarasov, S., Vyalyi, M.: Orbits of linear maps and regular languages. In: Kulikov, A., Vereshchagin, N. (eds.) CSR 2011. LNCS, vol. 6651, pp. 305–316. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20712-9_24

    Chapter  MATH  Google Scholar 

  18. Vyalyi, M.N.: On models of a nondeterministic computation. In: Frid, A., Morozov, A., Rybalchenko, A., Wagner, K.W. (eds.) CSR 2009. LNCS, vol. 5675, pp. 334–345. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03351-3_31

    Chapter  Google Scholar 

  19. Vyalyi, M.N.: On regular realizability problems. Probl. Inf. Transm. 47(4), 342–352 (2011)

    Article  MathSciNet  Google Scholar 

  20. Vyalyi, M.N.: On expressive power of regular realizability problems. Probl. Inf. Transm. 49(3), 276–291 (2013). https://doi.org/10.1134/S0032946013030058

    Article  MathSciNet  MATH  Google Scholar 

  21. Vyalyi, M.N., Rubtsov, A.A.: On regular realizability problems for context-free languages. Probl. Inf. Transm. 51(4), 349–360 (2015). https://doi.org/10.1134/S0032946015040043

    Article  MathSciNet  MATH  Google Scholar 

  22. Wagner, K., Wechsung, G.: Computational Complexity. Springer, Netherlands (1986)

    MATH  Google Scholar 

  23. Wolf, P.: Decidability of the regular intersection emptiness problem. Master’s thesis, Wilhelm Schickhard Institut für Informatik, Universität Tübingen (2018)

    Google Scholar 

Download references

Acknowledgment

The author thanks Markus L. Schmid for proofreading and helpful discussions and is grateful to the anonymous reviewers for their suggestions. The author was partially supported by DFG (FE 560/9-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Wolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wolf, P. (2019). On the Decidability of Finding a Positive ILP-Instance in a Regular Set of ILP-Instances. In: Hospodár, M., Jirásková, G., Konstantinidis, S. (eds) Descriptional Complexity of Formal Systems. DCFS 2019. Lecture Notes in Computer Science(), vol 11612. Springer, Cham. https://doi.org/10.1007/978-3-030-23247-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23247-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23246-7

  • Online ISBN: 978-3-030-23247-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics