Advertisement

Pushdown Automata and Constant Height: Decidability and Bounds

  • Giovanni Pighizzini
  • Luca PrigionieroEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11612)

Abstract

It cannot be decided whether a pushdown automaton accepts using constant pushdown height, with respect to the input length, or not. Furthermore, in the case of acceptance in constant height, the height cannot be bounded by any recursive function in the size of the description of the machine. In contrast, in the restricted case of pushdown automata over a one-letter input alphabet, i.e., unary pushdown automata, the above property becomes decidable. Moreover, if the height is bounded by a constant in the input length, then it is at most exponential with respect to the size of the description of the pushdown automaton. This bound cannot be reduced. Finally, if a unary pushdown automaton uses nonconstant height to accept, then the height should grow at least as the logarithm of the input length. This bound is optimal.

References

  1. 1.
    Alberts, M.: Space complexity of alternating Turing machines. In: Budach, L. (ed.) FCT 1985. LNCS, vol. 199, pp. 1–7. Springer, Heidelberg (1985).  https://doi.org/10.1007/BFb0028785CrossRefGoogle Scholar
  2. 2.
    Bednárová, Z., Geffert, V., Mereghetti, C., Palano, B.: Removing nondeterminism in constant height pushdown automata. Inform. Comput. 237, 257–267 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bednárová, Z., Geffert, V., Reinhardt, K., Yakaryilmaz, A.: New results on the minimum amount of useful space. Internat. J. Found. Comput. Sci. 27(2), 259–282 (2016).  https://doi.org/10.1142/S0129054116400098MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chomsky, N.: A note on phrase structure grammars. Inform. Control 2(4), 393–395 (1959).  https://doi.org/10.1016/S0019-9958(59)80017-6MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Geffert, V., Mereghetti, C., Palano, B.: More concise representation of regular languages by automata and regular expressions. Inform. Comput. 208(4), 385–394 (2010).  https://doi.org/10.1016/j.ic.2010.01.002MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ginsburg, S., Rice, H.G.: Two families of languages related to ALGOL. J. ACM 9(3), 350–371 (1962).  https://doi.org/10.1145/321127.321132MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Guillon, B., Pighizzini, G., Prigioniero, L.: Non-self-embedding grammars, constant-height pushdown automata, and limited automata. In: Câmpeanu, C. (ed.) CIAA 2018. LNCS, vol. 10977, pp. 186–197. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-94812-6_16CrossRefzbMATHGoogle Scholar
  8. 8.
    Hartmanis, J.: Context-free languages and Turing machine computations. In: Mathematical Aspects of Computer Science. Proceedings of Symposia in Applied Mathematics, vol. 19, pp. 42–51. American Mathematical Society (1967)Google Scholar
  9. 9.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Boston (1979)zbMATHGoogle Scholar
  10. 10.
    Malcher, A., Meckel, K., Mereghetti, C., Palano, B.: Descriptional complexity of pushdown store languages. J. Autom. Lang. Comb. 17(2–4), 225–244 (2012)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata. SIAM J. Comput. 30(6), 1976–1992 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: Proceedings of 12th Annual Symposium on Switching and Automata Theory, pp. 188–191. IEEE Computer Society (1971)Google Scholar
  13. 13.
    Pighizzini, G., Shallit, J., Wang, M.: Unary context-free grammars and pushdown automata, descriptional complexity and auxiliary space lower bounds. J. Comput. Syst. Sci. 65(2), 393–414 (2002).  https://doi.org/10.1006/jcss.2002.1855MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Rado, T.: On non-computable functions. Bell Syst. Tech. J. 41(3), 877–884 (1962).  https://doi.org/10.1002/j.1538-7305.1962.tb00480.xMathSciNetCrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.Dipartimento di InformaticaUniversità degli Studi di MilanoMilanItaly

Personalised recommendations