Skip to main content

Low-Complexity Tilings of the Plane

  • Conference paper
  • First Online:
Descriptional Complexity of Formal Systems (DCFS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11612))

Included in the following conference series:

Abstract

A two-dimensional configuration is a coloring of the infinite grid \(\mathbb {Z}^2\) with finitely many colors. For a finite subset D of \(\mathbb {Z}^2\), the D-patterns of a configuration are the colored patterns of shape D that appear in the configuration. The number of distinct D-patterns of a configuration is a natural measure of its complexity. A configuration is considered having low complexity with respect to shape D if the number of distinct D-patterns is at most |D|, the size of the shape. This extended abstract is a short review of an algebraic method to study periodicity of such low complexity configurations.

J. Kari—Research supported by the Academy of Finland grant 296018.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Axenovich, M.A.: On multiple coverings of the infinite rectangular grid with balls of constant radius. Discrete Math. 268(1), 31–48 (2003). https://doi.org/10.1016/S0012-365X(02)00744-6

    Article  MathSciNet  MATH  Google Scholar 

  2. Bhattacharya, S.: Periodicity and decidability of tilings of \(\mathbb{Z}^{2}\). CoRR abs/1602. 05738 (2016). https://arxiv.org/abs/1602.05738

  3. Birkhoff, G.D.: Quelques théorèmes sur le mouvement des systèmes dynamiques. Bull. Soc. Math. France 40, 305–323 (1912). https://doi.org/10.24033/bsmf.909

    Article  MathSciNet  MATH  Google Scholar 

  4. Cassaigne, J.: Subword complexity and periodicity in two or more dimensions. In: Rozenberg, G., Thomas, W. (eds.) Developments in Language Theory. Foundations, Applications, and Perspectives, pp. 14–21. World Scientific (1999)

    Google Scholar 

  5. Cyr, V., Kra, B.: Nonexpansive \({\mathbb{Z}}^2\)-subdynamics and Nivat’s Conjecture. Trans. Amer. Math. Soc. 367(9), 6487–6537 (2015). https://doi.org/10.1090/S0002-9947-2015-06391-0

    Article  MathSciNet  MATH  Google Scholar 

  6. Kari, J., Moutot, E.: Decidability and periodicity of low complexity tilings. CoRR abs/1904.01267 (2019). http://arxiv.org/abs/1904.01267

  7. Kari, J., Moutot, E.: Nivat’s conjecture and pattern complexity in algebraic subshifts. Theoret. Comput. Sci. (2019, to appear). https://doi.org/10.1016/j.tcs.2018.12.029

  8. Kari, J., Szabados, M.: An algebraic geometric approach to multidimensional words. In: Maletti, A. (ed.) CAI 2015. LNCS, vol. 9270, pp. 29–42. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23021-4_3

    Chapter  MATH  Google Scholar 

  9. Kari, J., Szabados, M.: An algebraic geometric approach to Nivat’s conjecture. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 273–285. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6_22

    Chapter  Google Scholar 

  10. Kari, J., Szabados, M.: An algebraic geometric approach to Nivat’s conjecture. CoRR abs/1605.05929 (2016). http://arxiv.org/abs/1605.05929

  11. Lagarias, J.C., Wang, Y.: Tiling the line with translates of one tile. Invent. Math. 124, 341–365 (1996). https://doi.org/10.1007/s002220050056

    Article  MathSciNet  MATH  Google Scholar 

  12. Nivat, M.: Keynote address at the 25th anniversary of EATCS, during ICALP (1997)

    Google Scholar 

  13. Schmidt, K.: Dynamical systems of algebraic origin. Progress in mathematics. Birkhäuser, Basel (1995). https://doi.org/10.1007/978-3-0348-0277-2

  14. Szabados, M.: Nivat’s conjecture holds for sums of two periodic configurations. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp. 539–551. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73117-9_38

    Chapter  Google Scholar 

  15. Szegedy, M.: Algorithms to tile the infinite grid with finite clusters. In: Proceedings 39th Annual Symposium on Foundations of Computer Science, FOCS 1998, pp. 137–147. IEEE Computer Society (1998). https://doi.org/10.1109/SFCS.1998.743437

  16. Wang, H.: Proving theorems by pattern recognition - II. Bell Syst. Tech. J. 40(1), 1–41 (1961). https://doi.org/10.1002/j.1538-7305.1961.tb03975.x

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarkko Kari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kari, J. (2019). Low-Complexity Tilings of the Plane. In: Hospodár, M., Jirásková, G., Konstantinidis, S. (eds) Descriptional Complexity of Formal Systems. DCFS 2019. Lecture Notes in Computer Science(), vol 11612. Springer, Cham. https://doi.org/10.1007/978-3-030-23247-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23247-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23246-7

  • Online ISBN: 978-3-030-23247-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics