Advertisement

State Complexity of GF(2)-Concatenation and GF(2)-Inverse on Unary Languages

  • Alexander OkhotinEmail author
  • Elizaveta Sazhneva
Conference paper
  • 151 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11612)

Abstract

The paper investigates the state complexity of two operations on regular languages, known as GF(2)-concatenation and GF(2)-inverse (Bakinova et al., “Formal languages over GF(2)”, LATA 2018), in the case of a one-symbol alphabet. The GF(2)-concatenation is a variant of the classical concatenation obtained by replacing Boolean logic in its definition with the GF(2) field; it is proved that GF(2)-concatenation of two unary languages recognized by an m-state and an n-state DFA is recognized by a DFA with 2mn states, and this number of states is necessary in the worst case, as long as m and n are relatively prime. This operation is known to have an inverse, and the state complexity of the GF(2)-inverse operation over a unary alphabet is proved to be exactly \(2^{n-1}+1\).

References

  1. 1.
    Bakinova, E., Basharin, A., Batmanov, I., Lyubort, K., Okhotin, A., Sazhneva, E.: Formal languages over GF(2). In: Klein, S.T., Martín-Vide, C., Shapira, D. (eds.) LATA 2018. LNCS, vol. 10792, pp. 68–79. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-77313-1_5CrossRefGoogle Scholar
  2. 2.
    Brzozowski, J.A.: Quotient complexity of regular languages. J. Autom. Lang. Comb. 15(1/2), 71–89 (2010).  https://doi.org/10.25596/jalc-2010-071MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47(3), 149–158 (1986).  https://doi.org/10.1016/0304-3975(86)90142-8MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Daley, M., Domaratzki, M., Salomaa, K.: Orthogonal concatenation: language equations and state complexity. J. UCS 16(5), 653–675 (2010).  https://doi.org/10.3217/jucs-016-05-0653MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic unary automata into simpler automata. Theor. Comput. Sci. 295, 189–203 (2003).  https://doi.org/10.1016/S0304-3975(02)00403-6MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Jirásková, G., Okhotin, A.: State complexity of unambiguous operations on deterministic finite automata. In: Konstantinidis, S., Pighizzini, G. (eds.) DCFS 2018. LNCS, vol. 10952, pp. 188–199. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-94631-3_16CrossRefGoogle Scholar
  7. 7.
    Kunc, M., Okhotin, A.: Describing periodicity in two-way deterministic finite automata using transformation semigroups. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 324–336. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22321-1_28CrossRefzbMATHGoogle Scholar
  8. 8.
    Makarov, V., Okhotin, A.: On the expressive power of GF(2)-grammars. In: Catania, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds.) SOFSEM 2019. LNCS, vol. 11376, pp. 310–323. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-10801-4_25
  9. 9.
    Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math. Doklady 11, 1373–1375 (1970)zbMATHGoogle Scholar
  10. 10.
    Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata. SIAM J. Comput. 30(6), 1976–1992 (2001).  https://doi.org/10.1137/S009753979935431XMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Okhotin, A.: Unambiguous finite automata over a unary alphabet. Inf. Comput. 212, 15–36 (2012).  https://doi.org/10.1016/j.ic.2012.01.003MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacobsthal’s function. Int. J. Found. Comput. Sci. 13(1), 145–159 (2002).  https://doi.org/10.1142/S012905410200100XMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994).  https://doi.org/10.1016/0304-3975(92)00011-FMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations