Advertisement

On Classes of Regular Languages Related to Monotone WQOs

  • Mizuhito Ogawa
  • Victor SelivanovEmail author
Conference paper
  • 158 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11612)

Abstract

We study relationships of monotone well quasiorders to regular languages and \(\omega \)-languages, concentrating on decidability of the lattices of upper sets on words and infinite words. We establish rather general sufficient conditions for decidability. Applying these conditions to concrete natural monotone WQOs, we obtain new decidability results and new proofs of some known results.

Keywords

Regular language Monotone WQO Lattice of upper sets Periodic extension Decidability Difference hierarchy 

References

  1. 1.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge (1994)Google Scholar
  2. 2.
    Ehrenfeucht, A., Haussler, D., Rozenberg, G.: On regularity of context-free languages. Theor. Comput. Sci. 27, 311–332 (1983)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Glaßer, C., Schmitz, H.: The boolean structure of dot-depth one. J. Autom. Lang. Comb. 6(4), 437–452 (2001).  https://doi.org/10.25596/jalc-2001-437MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Glaßer, C., Schmitz, H., Selivanov, V.L.: Efficient algorithms for membership in boolean hierarchies of regular languages. Theor. Comput. Sci. 646(C), 86–108 (2016).  https://doi.org/10.1016/j.tcs.2016.07.017MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Higman, G.: Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc. s3–2(1), 326–336 (1952).  https://doi.org/10.1112/plms/s3-2.1.326MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kříž, I., Thomas, R.: Ordinal types in ramsey theory and well-partial-ordering theory. In: Neše tř il, J., Rödl, V. (eds.) Mathematics of Ramsey Theory. Algorithms and Combinatorics, vol. 5. Springer, Heidelberg (1990).  https://doi.org/10.1007/978-3-642-72905-8_7CrossRefGoogle Scholar
  7. 7.
    Laver, R.: Better-quasi-orderings and a class of trees. In: Studies in foundations and combinatorics, Advances in mathematics: Supplementary studies, vol. 1, pp. 31–48. Academic Press (1978)Google Scholar
  8. 8.
    de Luca, A., Varricchio, S.: Finiteness and Regularity in Semigroups and Formal Languages. Monographs in Theoretical Computer Science. Springer, Heidelberg (1999).  https://doi.org/10.1007/978-3-642-59849-4CrossRefzbMATHGoogle Scholar
  9. 9.
    Marcone, A.: Foundations of BQO theory. Trans. AMS 345(2), 641–660 (1994)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Marcone, A.: Fine analysis of the quasi-orderings on the power set. Order 18(4), 339–347 (2001).  https://doi.org/10.1023/A:1013952225669MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Nash-Williams, C.S.J.A.: On well-quasi-ordering transfinite sequences. Math. Proc. Cambridge Philos. Soc. 61, 33–39 (1965)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ogawa, M.: Well-quasi-orders and regular omega-languages. Theor. Comput. Sci. 324(1), 55–60 (2004).  https://doi.org/10.1016/j.tcs.2004.03.052CrossRefzbMATHGoogle Scholar
  13. 13.
    Perrin, D., Pin, J.: Infinite Words, Pure and Applied Mathematics, vol. 141 (2004)Google Scholar
  14. 14.
    Pin, J.: Positive varieties and infinite words. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 76–87. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0054312CrossRefGoogle Scholar
  15. 15.
    Rado, R.: Partial well-ordering of sets of vectors. Mathematika 1, 89–95 (1954)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Rogers Jr., H.: Theory of recursive functions and effective computability. McGraw-Hill, New York (1967)zbMATHGoogle Scholar
  17. 17.
    Selivanov, V.L.: A logical approach to decidability of hierarchies of regular star—free languages. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 539–550. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44693-1_47CrossRefGoogle Scholar
  18. 18.
    Selivanov, V.L.: Hierarchies and reducibilities on regular languages related to modulo counting. RAIRO Theor. Inform. Appl. 43(1), 95–132 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science, vol. B, pp. 133–192. Elsevier Science Publishers (1990)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.Japan Advanced Institute of Science and TechnologyNomiJapan
  2. 2.A.P. Ershov Institute of Informatics Systems SB RASNovosibirskRussia
  3. 3.Kazan Federal UniversityKazanRussia

Personalised recommendations