Advertisement

Nondeterminism Growth and State Complexity

  • Chris KeelerEmail author
  • Kai Salomaa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11612)

Abstract

Tree width (respectively, string path width) measures the maximal number of partial (respectively, complete) computations of a nondeterministic finite automaton (NFA) on an input of given length. We study the growth rate of the tree width and string path width measures. As the main result we show that the degree of the polynomial bounding the tree width of an NFA differs by at most one from the degree of the polynomial bounding the string path width. Also we show that for \(m \ge 4\) there exists an m-state NFA with finite string path width such that any equivalent finite tree width NFA needs \(2^{m-2} + 1\) states.

References

  1. 1.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)zbMATHGoogle Scholar
  2. 2.
    Goldstine, J., Kintala, C.M.R., Wotschke, D.: On measuring nondeterminism in regular languages. Inf. Comput. 86(2), 179–194 (1990)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Han, Y.S., Salomaa, A., Salomaa, K.: Ambiguity, nondeterminism and state complexity of finite automata. Acta Cybern. 23(1), 141–157 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata - a survey. Inf. Comput. 209(3), 456–470 (2011).  https://doi.org/10.1016/j.ic.2010.11.013MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hromkovič, J., Seibert, S., Karhumäki, J., Klauck, H., Schnitger, G.: Communication complexity method for measuring nondeterminism in finite automata. Inf. Comput. 172(2), 202–217 (2002).  https://doi.org/10.1006/inco.2001.3069MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Keeler, C., Salomaa, K.: Branching measures and nearly acyclic NFAs. In: Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS, vol. 10316, pp. 202–213. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60252-3_16CrossRefGoogle Scholar
  7. 7.
    Keeler, C., Salomaa, K.: Cycle height of finite automata. In: Konstantinidis, S., Pighizzini, G. (eds.) DCFS 2018. LNCS, vol. 10952, pp. 200–211. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-94631-3_17CrossRefGoogle Scholar
  8. 8.
    Kutrib, M., Pighizzini, G.: Recent trends in descriptional complexity of formal languages. Bull. EATCS 111, 70–86 (2013)MathSciNetGoogle Scholar
  9. 9.
    Leung, H.: Separating exponentially ambiguous finite automata from polynomially ambiguous finite automata. SIAM J. Comput. 27(4), 1073–1082 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Leung, H.: Descriptional complexity of NFA of different ambiguity. Int. J. Found. Comput. Sci. 16(5), 975–984 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Palioudakis, A., Salomaa, K., Akl, S.G.: State complexity of finite tree width NFAs. J. Autom. Lang. Comb. 17(2–4), 245–264 (2012)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Ravikumar, B., Ibarra, O.H.: Relating the type of ambiguity of finite automata to the succinctness of their representation. SIAM J. Comput. 18(6), 1263–1282 (1989).  https://doi.org/10.1137/0218083MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  14. 14.
    Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theor. Comput. Sci. 88(2), 325–349 (1991).  https://doi.org/10.1016/0304-3975(91)90381-BMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.School of ComputingQueen’s UniversityKingstonCanada

Personalised recommendations