Skip to main content

State Complexity of Simple Splicing

  • Conference paper
  • First Online:
Descriptional Complexity of Formal Systems (DCFS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11612))

Included in the following conference series:

Abstract

Splicing, as a binary word/language operation, was inspired by the DNA recombination under the action of restriction enzymes and ligases, and was first introduced by Tom Head in 1987. Splicing systems as generative mechanisms were defined as consisting of an initial starting set of words called an axiom set, and a set of splicing rules—each encoding a splicing operation—, as their computational engine to iteratively generate new strings starting from the axiom set. Since finite splicing systems (splicing systems with a finite axiom set and a finite set of splicing rules) generate a subclass of the family of regular languages, descriptional complexity questions about splicing systems can be answered in terms of the size of the minimal deterministic finite automata that recognize their languages. In this paper we focus on a particular type of splicing systems, called simple splicing systems, where the splicing rules are of a particular form. We prove a tight state complexity bound of \(2^n - 1\) for (semi-)simple splicing systems with a regular initial language with state complexity \(n \ge 3\). We also show that the state complexity of a (semi-)simple splicing system with a finite initial language is at most \(2^{n-2} + 1\), and that whether this bound is reachable or not depends on the size of the alphabet and the number of splicing rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonizzoni, P., Ferretti, C., Mauri, G., Zizza, R.: Separating some splicing models. Inform. Process. Lett. 79(6), 255–259 (2001)

    Article  MathSciNet  Google Scholar 

  2. Câmpeanu, C., Culik, K., Salomaa, K., Yu, S.: State Complexity of Basic Operations on Finite Languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214, pp. 60–70. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45526-4_6

    Chapter  Google Scholar 

  3. Ceterchi, R.: An algebraic characterization of semi-simple splicing. Fund. Inform. 73(1–2), 19–25 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Culik II, K., Harju, T.: Splicing semigroups of dominoes and DNA. Discrete Appl. Math. 31(3), 261–277 (1991). https://doi.org/10.1016/0166-218X(91)90054-Z

    Article  MathSciNet  MATH  Google Scholar 

  5. Enaganti, S.K., Kari, L., Ng, T., Wang, Z.: Word blending in formal languages: the brangelina effect. In: Stepney, S., Verlan, S. (eds.) UCNC 2018. LNCS, vol. 10867, pp. 72–85. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92435-9_6

    Chapter  Google Scholar 

  6. Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity. J. Autom. Lang. Comb. 21(4), 251–310 (2017). https://doi.org/10.25596/jalc-2016-251

    Article  MathSciNet  MATH  Google Scholar 

  7. Gatterdam, R.W.: Splicing systems and regularity. Int. J. Comput. Math. 31(1–2), 63–67 (1989). https://doi.org/10.1080/00207168908803788

    Article  MATH  Google Scholar 

  8. Golan, J.S.: Semirings and their Applications. Springer, Dordrecht (1999). https://doi.org/10.1007/978-94-015-9333-5

    Book  MATH  Google Scholar 

  9. Goode, E., Pixton, D.: Semi-simple splicing systems. Where Mathematics. Computer Science, Linguistics and Biology Meet, pp. 343–352. Springer, Dordrecht (2001). https://doi.org/10.1007/978-94-015-9634-3_30

    Chapter  Google Scholar 

  10. Head, T.: Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. Bull. Math. Biol. 49(6), 737–759 (1987)

    Article  MathSciNet  Google Scholar 

  11. Head, T., Pixton, D.: Splicing and regularity. In: Esik, Z., Martín-Vide, C., Mitrana, V. (eds.) Recent Advances in Formal Languages and Applications. SCI, vol. 25, pp. 119–147. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-33461-3_5

    Chapter  Google Scholar 

  12. Holzer, M., Jakobi, S.: Chop operations and expressions: descriptional complexity considerations. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 264–275. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22321-1_23

    Chapter  Google Scholar 

  13. Loos, R., Malcher, A., Wotschke, D.: Descriptional complexity of splicing systems. Internat. J. Found. Comput. Sci. 19(4), 813–826 (2008)

    Article  MathSciNet  Google Scholar 

  14. Mateescu, A., Păun, G., Rozenberg, G., Salomaa, A.: Simple splicing systems. Discrete Appl. Math. 84(1–3), 145–163 (1998). https://doi.org/10.1016/S0166-218X(98)00002-X

    Article  MathSciNet  MATH  Google Scholar 

  15. Pixton, D.: Regularity of splicing languages. Discrete Appl. Math. 69(1–2), 101–124 (1996). https://doi.org/10.1016/0166-218X(95)00079-7

    Article  MathSciNet  MATH  Google Scholar 

  16. Păun, G.: On the splicing operation. Discrete Appl. Math. 70(1), 57–79 (1996). https://doi.org/10.1016/0166-218X(96)00101-1

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Ng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kari, L., Ng, T. (2019). State Complexity of Simple Splicing. In: Hospodár, M., Jirásková, G., Konstantinidis, S. (eds) Descriptional Complexity of Formal Systems. DCFS 2019. Lecture Notes in Computer Science(), vol 11612. Springer, Cham. https://doi.org/10.1007/978-3-030-23247-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23247-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23246-7

  • Online ISBN: 978-3-030-23247-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics