Advertisement

Computability on Quasi-Polish Spaces

  • Mathieu HoyrupEmail author
  • Cristóbal Rojas
  • Victor Selivanov
  • Donald M. Stull
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11612)

Abstract

We investigate the effectivizations of several equivalent definitions of quasi-Polish spaces and study which characterizations hold effectively. Being a computable effectively open image of the Baire space is a robust notion that admits several characterizations. We show that some natural effectivizations of quasi-metric spaces are strictly stronger.

References

  1. 1.
    Abramsky, S.: Domain theory. In: Abramsky, S., Gabbay, D., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science. Clarendon Press, Oxford (1994)zbMATHGoogle Scholar
  2. 2.
    Becher, V., Grigorieff, S.: Borel and Hausdorff hierarchies in topological spaces of choquet games and their effectivization. Math. Struct. Comput. Sci. 25(7), 1490–1519 (2015).  https://doi.org/10.1017/S096012951300025XMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    de Brecht, M.: Quasi-polish spaces. Ann. Pure Appl. Logic 164(3), 356–381 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brecht de, M., Pauly, A., Schröder, M.: Overt choice. CoRR abs/1902.05926 (2019). http://arxiv.org/abs/1902.05926
  5. 5.
    Chen, R.: Notes on quasi-Polish spaces. CoRR abs/1902.05926 (2018). http://arxiv.org/abs/1809.07440
  6. 6.
    Gao, S.: Invariant Descriptive Set Theory. CRC Press, New York (2009)zbMATHGoogle Scholar
  7. 7.
    Gregoriades, V.: Classes of polish spaces under effective Borel isomorphism. Mem. Amer. Math. Soc. 240(1135) (2016).  https://doi.org/10.1090/memo/1135
  8. 8.
    Gregoriades, V., Kispéter, T., Pauly, A.: A comparison of concepts from computable analysis and effective descriptive set theory. Math. Struct. Comput. Sci. 27(8), 1414–1436 (2017).  https://doi.org/10.1017/S0960129516000128MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Grubba, T., Schröder, M., Weihrauch, K.: Computable metrization. MLQ Math. Log. Q. 53(4–5), 381–395 (2007).  https://doi.org/10.1002/malq.200710009MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hoyrup, M.: Genericity of weakly computable objects. Theory Comput. Syst.60(3), 396–420 (2017).  https://doi.org/10.1007/s00224-016-9737-6
  11. 11.
    Kechris, A.S.: Classical Descriptive Set Theory, GTM, vol. 156. Springer, New York (1995).  https://doi.org/10.1007/978-1-4612-4190-4CrossRefzbMATHGoogle Scholar
  12. 12.
    Korovina, M.V., Kudinov, O.V.: Towards computability over effectively enumerable topological spaces. Electron. Notes Theor. Comput. Sci. 221, 115–125 (2008).  https://doi.org/10.1016/j.entcs.2008.12.011MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Korovina, M., Kudinov, O.: On higher effective descriptive set theory. In: Kari, J., Manea, F., Petre, I. (eds.) CiE 2017. LNCS, vol. 10307, pp. 282–291. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58741-7_27CrossRefGoogle Scholar
  14. 14.
    Louveau, A.: Recursivity and compactness. In: Müller, G.H., Scott, D.S. (eds.) Higher Set Theory. LNM, vol. 669, pp. 303–337. Springer, Heidelberg (1978).  https://doi.org/10.1007/BFb0103106CrossRefGoogle Scholar
  15. 15.
    Moschovakis, Y.N.: Descriptive Set Theory. Mathematical Surveys and Monographs, Second edition. American Mathematical Society (2009). http://www.math.ucla.edu/~ynm/lectures/dst2009/dst2009.pdf
  16. 16.
    Rogers Jr., H.: Theory of Recursive Functions and Effective Computability. MIT Press, Cambridge (1987). https://mitpress.mit.edu/books/theory-recursive-functions-and-effective-computability. (Reprint from 1967)
  17. 17.
    Selivanov, V.: On index sets in the Kleene-Mostowski hierarchy. Trans. Inst. Math. 2, 135–158 (1982). in RussianMathSciNetzbMATHGoogle Scholar
  18. 18.
    Selivanov, V.L.: Towards a descriptive set theory for domain-like structures. Theoret. Comput. Sci. 365(3), 258–282 (2006).  https://doi.org/10.1016/j.tcs.2006.07.053
  19. 19.
    Selivanov, V.L.: On the difference hierarchy in countably based T\({}_{\text{0}}\)-spaces. Electron. Notes Theor. Comput. Sci. 221, 257–269 (2008).  https://doi.org/10.1016/j.entcs.2008.12.022
  20. 20.
    Selivanov, V.: Towards the effective descriptive set theory. In: Beckmann, A., Mitrana, V., Soskova, M. (eds.) CiE 2015. LNCS, vol. 9136, pp. 324–333. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-20028-6_33CrossRefGoogle Scholar
  21. 21.
    Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000).  https://doi.org/10.1007/978-3-642-56999-9CrossRefzbMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  • Mathieu Hoyrup
    • 1
    Email author
  • Cristóbal Rojas
    • 2
  • Victor Selivanov
    • 3
    • 4
  • Donald M. Stull
    • 1
  1. 1.Université de Lorraine, CNRS, Inria, LORIANancyFrance
  2. 2.Universidad Andres BelloSantiagoChile
  3. 3.A.P. Ershov Institute of Informatics Systems SB RASNovosibirskRussia
  4. 4.Kazan Federal UniversityKazanRussia

Personalised recommendations