Advertisement

The Syntactic Complexity of Semi-flower Languages

  • Kitti Gelle
  • Szabolcs IvánEmail author
Conference paper
  • 145 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11612)

Abstract

Semi-flower languages are those of the form \(L^*\) for some finite maximal prefix code L, or equivalently, those recognizable by a so-called semi-flower automaton, in which all the cycles have a common state \(q_0\), which happens to be the initial state and the only accepting state.

We show that the syntactic complexity of these languages is exactly \(n^n-n!+n\) (where n stands for the state complexity as usual) and that this bound is reachable with an alphabet of size n.

References

  1. 1.
    Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata (Encyclopedia of Mathematics and Its Applications). Cambridge University Press, New York (2009). https://dl.acm.org/citation.cfm?id=1708078
  2. 2.
    Brzozowski, J., Li, B.: Syntactic complexity of \(R\)- and \(J\)-trivial regular languages. Int. J. Found. Comput. Sci. 25(07), 807–821 (2014).  https://doi.org/10.1142/S0129054114400097
  3. 3.
    Brzozowski, J., Li, B., Liu, D.: Syntactic complexities of six classes of star-free languages. J. Autom. Lang. Comb. 17(2), 83–105 (2012)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Brzozowski, J.A., Li, B., Ye, Y.: Syntactic complexity of prefix-, suffix-, bifix-, and factor-free regular languages. Theoret. Comput. Sci. 449, 37–53 (2012).  https://doi.org/10.1016/j.tcs.2012.04.011. Preliminary version at DCFS 2011
  5. 5.
    Brzozowski, J.A., Szykuła, M., Ye, Y.: Syntactic complexity of regular ideals. Theory Comput. Syst. 62(5), 1175–1202 (2018).  https://doi.org/10.1007/s00224-017-9803-8
  6. 6.
    Brzozowski, J.A., Ye, Y.: Syntactic complexity of ideal and closed languages. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 117–128. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22321-1_11CrossRefGoogle Scholar
  7. 7.
    Holzer, M., König, B.: On deterministic finite automata and syntactic monoid size. Theoret. Comput. Sci. 327(3), 319–347 (2004).  https://doi.org/10.1016/j.tcs.2004.04.010
  8. 8.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)Google Scholar
  9. 9.
    Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad. Nauk SSSR 194, 1266–1268 (1970). in Russian. English translation in Soviet Math. Doklady 11(5), 1373–1375 (1970)Google Scholar
  10. 10.
    Singh, S.N.: Semi-Flower Automata. Ph.D. thesis, IIT Guwahati, India (2012)Google Scholar
  11. 11.
    Singh, S.N., Krishna, K.V.: The holonomy decomposition of some circular semi-flower automata. Acta Cybernet. 22(4), 791–805 (2016).  https://doi.org/10.14232/actacyb.22.4.2016.4
  12. 12.
    Singh, S.N., Krishna, K.V.: On syntactic complexity of circular semi-flower automata. In: Câmpeanu, C. (ed.) CIAA 2018. LNCS, vol. 10977, pp. 312–323. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-94812-6_26CrossRefGoogle Scholar
  13. 13.
    Szykuła, M., Wittnebel, J.: Syntactic complexity of bifix-free regular languages. Theoret. Comput. Sci. (2019, to appear).  https://doi.org/10.1016/j.tcs.2018.12.025

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of SzegedSzegedHungary

Personalised recommendations