Skip to main content

Assessment of Potential Land Degradation in Akarsa Watershed, West Bengal, Using GIS and Multi-influencing Factor Technique

  • Chapter
  • First Online:
Gully Erosion Studies from India and Surrounding Regions

Part of the book series: Advances in Science, Technology & Innovation ((ASTI))

Abstract

Land degradation and gully erosion are the very common and acute geo-environmental problems at the western part of West Bengal. The Akarsa watershed, which is a part of the Dwarakeswar river basin and also a part of Chotanagpur plateau, is highly vulnerable to land degradation. Here, rill and gully erosions are key functions of the land degradation process. In this chapter, delineation of potential land degradation zone (PLDZ) has been mapped by using remote sensing data and geographical information system (GIS) based on multi-influencing factor (MIF) technique for Akarsa watershed in West Bengal. It has been accomplished by integrating and analyzing different thematic maps. The degraded areas were delineated using visual interpretation techniques. Rankings and weights were assigned to each influencing factor for calculating statistically by the multi-influencing factor (MIF) technique. Finally, delineation of the potential land degradation zone (PLDZ) map is executed and classified into five degradation zones, viz., very low 13.74% (47.54 km2), low 27.52% (95.21 km2), moderate 38.15% (132.55 km2), high 16.18% (56.25 km2), and very high 4.41% (15.24 km2). Then, the receiver operating characteristic (ROC) curve is applied for validation of the methodology used in this work. The result of AUC (area under the curve) is very good indicating an accuracy of (0.828) 82%. The outcome of this PLDZ can be helpful in land conservation planning and strategy formulation for management in the Akarsa watershed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arabameri A, Pradhan B, Pourghasemi HR, Rezaei K (2018a) Identification of erosion-prone areas using different multi-criteria decision-making techniques and GIS. Geomatics, Natural Hazards and Risk 9(1):1129–1155. doi: https://doi.org/10.1080/19475705.2018.1513084

    Article  Google Scholar 

  • Arabameri A, Rezaei K, Pourghasemi HR, Lee S, Yamani M (2018b) GIS-based gully erosion susceptibility mapping: a comparison among three data-driven models and AHP knowledge-based technique. Environmental Earth Sciences 77(17):628. doi: https://doi.org/10.1007/s12665-018-7808-5

    Article  Google Scholar 

  • Asio VB, Jahn R, Perez FO, Navarrete IA, Abit Jr SM (2009) A review of soil degradation in the Philippines. Annals of Tropical Research 31:69–94

    Google Scholar 

  • Bahrawi JA, Elhag M, Aldhebiani AY, Galal HK, Hegazy AK, Alghailani E (2016) Soil erosion estimation using remote sensing techniques in Wadi Yalamlam Basin, Saudi Arabia. Advances in Materials Science and Engineering 2016:8. doi:https://doi.org/10.1155/2016/9585962

    Article  Google Scholar 

  • Barrett-Lennard EG, Hollington PA (2006) Development of a national program on saline agriculture for Pakistan. Available at: http://www.cazs.bangor.ac.uk/salinity/reports/National program.htm

  • Bera A (2017) Assessment of soil loss by universal soil loss equation (USLE) model using GIS techniques: a case study of Gumti River Basin, Tripura, India. Modeling Earth Systems and Environment 3(1):2

    Article  Google Scholar 

  • Biro K, Pradhan B, Buchroithner M, Makeschin F (2013) Land use/Land cover change analysis and its impact on soil properties in the northern part of Gadarif region, Sudan, Land Degrad. Dev 24: 90–102. doi:https://doi.org/10.1002/ldr.1116

    Article  Google Scholar 

  • Cerda A, Gimenez-Morera A, Bodi MB (2009) Soil and water losses from new citrus orchards growing on sloped soils in the western Mediterranean basin. Earth Surface Processes and Landforms 34(13):1822–1830

    Article  Google Scholar 

  • Cerda A, Gonzalez-Pelayo O, Gimenez-Morera A, Jordan A, Pereira P, Novara A, Brevik EC, Prosdocimi M, Mahmoodabadi M, Keesstra S, Orenes FG, Ritsema CJ (2016) Use of barley straw residues to avoid high erosion and runoff rates on persimmon plantations in Eastern Spain under low frequency-high magnitude simulated rainfall events. Soil Res 54(2):154–165

    Article  Google Scholar 

  • Chatterjee S, Krishna AP, Sharma AP (2014) Geospatial assessment of soil erosion vulnerability at watershed level in some sections of the Upper Subarnarekha river basin, Jharkhand, India. Environmental earth sciences 71(1): 357–374. doi:https://doi.org/10.1007/s12665-013-2439-3

    Article  Google Scholar 

  • De Souza RG, Da Silva DKA, De Mello CMA, Goto BT, Da Silva FSB, Sampaio EVSB, Maia LC (2013) Arbuscular mycorrhizal fungi in revegetated mined dunes, Land Degrad. Dev. 24: 147–155. doi:https://doi.org/10.1002/ldr.1113

    Article  Google Scholar 

  • Dedewanou M, Binet S, Rouet JL (2015) Groundwater vulnerability and risk mapping based on residence time distributions: spatial analysis for the estimation of lumped parametres. Water Resour Manag 29: 5489–5504. doi:https://doi.org/10.1007/s11269-015-1130-8

    Article  Google Scholar 

  • Dey S, Ghosh S, Debbarma C and Sarker P (2009) Some observation of regional evidences of Tertiary–Quaternary geo-dymanics in a paleo-coastal of Bengal basin, India. Russian Geol Geophys 50(11)

    Google Scholar 

  • Feoli E, Vuerich LG, Woldu Z (2002) Processes of environmental degradation and opportunities for rehabilitation in Adwa, Northern Ethiopia. Landsc Ecol 17:315–325

    Article  Google Scholar 

  • Frankl A, Poesen J, Haile M, Deckers J, Nyssen J (2013) Quantifying long-term changes in gully networks and volumes in dryland environments: the case of Northern Ethiopia. Geomorphology 201:254–263. doi:https://doi.org/10.1016/j.geomorph.2013.06.025

    Article  Google Scholar 

  • Gour D, Soumendu C, Nilanjana DC (2014) Weathering and mineralogical alteration of granitic rocks in Southern Purulia District, West Bengal, India. Int Res J Earth Sci 2(4):1–12

    Google Scholar 

  • Halder JC (2013) Land use/land cover and change detection mapping in Binpur-II Block, Paschim Medinipur District, West Bengal: A remote sensing and GIS perspective. IOSR J Hum Soc Sci 8(5):20–31

    Google Scholar 

  • Hill MJ, Braaten R, Veitch SM, Lees BG, Sharma S (2005) Multi-criteria decision analysis in spatial decision support: the ASSESS analytic hierarchy process and the role of quantitative methods and spatially explicit analysis. Environ. Modell. Softw 20: 955–976. doi:https://doi.org/10.1016/j.envsoft.2004.04.014

    Article  Google Scholar 

  • Horton RE (1932) Drainage-basin characteristics. Eos, transactions american geophysical union 13(1):350–361

    Article  Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geological Society of America Bulletin 50:275–370

    Article  Google Scholar 

  • ICAR (Indian Council of Agricultural Research): State of Indian Agriculture, 2012–2013, A report of Department of Agriculture and Cooperation, New Delhi, 9, 2013.

    Google Scholar 

  • Kakembo V (2001) Trends in vegetation degradation in relation to land tenure, rainfall, and population changes in Peddie district, Eastern Cape, South Africa. Environ Manag 28(1):39–46. doi:https://doi.org/10.1007/s002670010205

    Article  Google Scholar 

  • Karamesouti M, Detsis V, Kounalaki A, Vasiliou P, Salvati L, Kosmas C (2015) Land-use and land degradation processes affecting soil resources: evidence from a traditional Mediterranean cropland (Greece). Catena 132: 45–55. doi:https://doi.org/10.1016/j.catena.2015.04.010

    Article  Google Scholar 

  • Keesstra S, Pereira P, Novara A, Brevik EC, Azorin-Molina C, Parras-Alcántara, L, Jordan A, Cerda A (2016) Effects of soil management techniques on soil water erosion in apricot orchards. Sci. Total Environ 551:357–366. doi:https://doi.org/10.1016/j.scitotenv.2016.01.182

    Article  Google Scholar 

  • Kelly C, Ferrara A, Wilson GA, Ripullone F, Harmer N, Salvati L (2015) Community resilience and land degradation in forest and shrubland socio-ecological systems: evidence from Gorgoglione, Basilicata, Italy. Land Use Policy 46:11–20. doi:https://doi.org/10.1016/j.landusepol.2015.01.026

    Article  Google Scholar 

  • Leh M, Bajwa S, Chaubey I (2013) Impact of land use change on erosion risk: an integrated remote sensing, geographic information system and modelling methodology. Land Degrad. Dev 24:409–421. doi:https://doi.org/10.1002/ldr.1137

    Article  Google Scholar 

  • Ligonja PJ, Shrestha RP (2015) Soil erosion assessment in kondoa eroded area in Tanzania using universal soil loss equation, geographic information systems and socioeconomic approach. Land Degrad Dev 26(4):367–379

    Article  Google Scholar 

  • Low PS (2013) Economic and social impacts of desertification, land degradation and drought. White Paper I. UNCCD 2nd Scientific Conference, prepared with the contributions of an international group of scientists. Available at: https://profiles.uonbi.ac.ke/jmariara/files/unccd_white_paper_1.pdf

    Google Scholar 

  • Magesh NS, Chandrasekar N, Soundranayagam JP (2012) Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geos. Frontiers 3(2):189–196

    Article  Google Scholar 

  • Mahala, A (2017) Processes and Status of Land Degradation in a Plateau Fringe Region of Tropical Environment. Environmental Processes 4(3):663–682.doi:https://doi.org/10.1007/s40710-017-0255-6

    Article  Google Scholar 

  • Mahmoud SH, Alazba AA (2016) Integrated remote sensing and GIS-based approach for deciphering groundwater potential zones in the central region of Saudi Arabia. Environ Earth Sci 75(4):1–28. doi:https://doi.org/10.1007/s12665-015-5156-2

    Article  Google Scholar 

  • Minami K (2009) Soil and humanity: Culture, civilization, livelihood and health. Soil Sci. Plant Nutr 55: 603–615. doi:https://doi.org/10.1111/j.1747-0765.2009.00401.x

    Article  Google Scholar 

  • Ministry of Environment and Forestry (2011) Elucidation of the 4 National Report submitted to UNCCD Secretariat. Ministry of Environment and Forest. GOI 1–121. http://envfor.nic.in/sites/default/files/unccdreport_0.pdf

  • Mohawesh Y, Taimeh A, Ziadat F (2015) Effects of land use changes and soil conservation intervention on soil properties as indicators for land degradation under a Mediterranean climate. Solid Earth 6:857–868. doi:https://doi.org/10.5194/se-6-857-2015

    Article  Google Scholar 

  • Molla T, Sisheber B (2017) Estimating soil erosion risk and evaluating erosion control measures for soil conservation planning at Koga watershed in the highlands of Ethiopia. Solid Earth 8(1):13–13.

    Article  Google Scholar 

  • Moore ID, Burch GJ (1986) Physical basis of the length-slope factor in the universal soil loss equation. Soil Sci Soc Am J 50:1294–1298

    Article  Google Scholar 

  • Nachtergaele F, Petri M, Biancalani R, Van Lynden G, Van Velthuizen H (2010) Global Land Degradation Information System (GLADIS), Beta Version, An information database for land degradation assessment at global level, Land Degradation Assessment in Dry lands Technical Report, no. 17, FAO, Rome, Italy, 2010.

    Google Scholar 

  • Nagarajan R, Roy A, Vinod Kumar R, Mukherjee A, Khire MV (2000) Landslide hazard suspectibility mapping based on terrain and climatic factors for tropical monsoon regions. Bull Engl Geol Env 58:275–287

    Article  Google Scholar 

  • Naseer A, Pandey P (2018) Assessment and monitoring of land degradation using geospatial technology in Bathinda district, Punjab, India. Solid Earth 9(1):75–90 doi:https://doi.org/10.5194/se-9-75-2018

    Article  Google Scholar 

  • Ohta Y, Nakagoshi N (2011) Analysis of Factors Affecting the Landscape Dynamics of Islands in Western Japan. In: Hong SK (ed) Ecol. Res. Monogr. Springer, Tokyo, pp 169–185. doi:https://doi.org/10.1007/978-4-431-87799-8_12

    Chapter  Google Scholar 

  • Pallavicini Y, Alday JG, Martinez-Ruiz CF (2015) Factors affecting herbaceous richness and biomass accumulation patterns of reclaimed coal mines. Land Degrad. Dev 26:211–217. doi:https://doi.org/10.1002/ldr.2198

    Article  Google Scholar 

  • Rahmati O, Haghizadeh A, Pourghasemi HR, Noormohamadi F (2016) Gully erosion susceptibility mapping: the role of GIS based bivariate statistical models and their comparison. Nat Hazards 82:1231–1258

    Article  Google Scholar 

  • Reddy VR (2003) Land degradation in India: extent, costs and determinants. Econ Polit Wkly 38(44): 4700–4713

    Google Scholar 

  • Samanta RK, Bhunia GS, Shit PK (2016) Spatial modelling of soil erosion susceptibility mapping in lower basin of Subarnarekha river (India) based on geospatial techniques. Modeling Earth Systems and Environment. 2(2):99.doi:https://doi.org/10.1007/s40808-016-0170-2

    Article  Google Scholar 

  • Sarkar D, Hayak DC, Dutta D, Dhyani BL (2005) Soil Erosion of West Bengal. NBSS publ. No. 117,NBSS & LUP (ICAR), Nagpur, p 1–59

    Google Scholar 

  • Scherr SJ, Yadav S (1997) Land degradation in the developing world: issues and policy options for 2020. Int Food Policy Res Inst 2020: 44

    Google Scholar 

  • Scullion JJ, Vogt KA, Sienkiewicz AA, Gmur SJ, Trujillo C (2014) Assessing the influence of land-cover change and conflicting land-use authorizations on ecosystem conversion on the forest frontier of Madre de Dios, Peru. Biol Conserv 171:247–258. doi:https://doi.org/10.1016/j.biocon.2014.01.036

    Article  Google Scholar 

  • Sen J, Sen S, Bandyopadhyay S (2004) Geomorphological investigation of badlands- a case study at Garbheta, West Medinipur District, West Bengal, India. In: Singh S, Sharma HS, De SK (eds) Geomorphology and environment. ACB publication, Kolkata, p 204–234

    Google Scholar 

  • Shaban A, Khawlie M, Abdallah C (2006) Use of remote sensing and GIS to determine recharge potential zone: the case of Occidental Lebanon. Hydrogeal J 14(4): 433–443. doi:https://doi.org/10.1007/s10040-005-0437-6

    Article  Google Scholar 

  • Sheng TC (1989) soil conservation on small farmers in the humid tropics. food and agriculture organization of the United Nations –FAO: Rome.

    Google Scholar 

  • Shit PK, Maiti R (2012) Rill Hydraulics - An experimental study on gully basin in lateritic upland of Paschim Medinipur, West Bengal, India. J Geogr Geol 4(4):1–11. doi:https://doi.org/10.5539/jgg.v4n4p1

    Article  Google Scholar 

  • Shit PK, Nandi AS, Bhunia GS (2015) Soil erosion risk mapping using RUSLE model on Jhargram sub-division at West Bengal in India. Model Earth Syst Environ 1(3):28. doi:https://doi.org/10.1007/s40808-015-0032-3

    Article  Google Scholar 

  • Stéphenne N, Lambin EF (2001) A dynamic simulation model of land-use changes in Sudano sahelian countries of Africa (SALU). Agric Ecosyst Environ 85(1–3):145–161. doi:https://doi.org/10.1016/S0167-8809(01)00181-5

    Article  Google Scholar 

  • Thapa R, Gupta S, Guin S, Kaur H (2017) Assessment of groundwater potential zones using multi-influencing factor (MIF) and GIS: a case study from Birbhum district, West Bengal. Applied Water Science 7(7): 4117–4131.doi: https://doi.org/10.1007/s13201-017-0571-z

    Article  Google Scholar 

  • Tucker CJ, Sellers PJ (1986) Satellite remote sensing of primary production. International journal of remote sensing 7(11): 1395–1416

    Article  Google Scholar 

  • Wischmeir WH, Smith DD (1978) Predicting rainfall erosion losses-a guide to conservation planning. Predicting rainfall erosion losses-a guide to conservation planning. Agr. Handb. No. 527,USDA, Washington, D.C

    Google Scholar 

  • Zhao X, Dai J, Wang J (2013) GIS-based evaluation and spatial distribution characteristics of land degradation in Bijiang watershed. International Conference on Combating Land Degradation in Agricultural Areas (ICCLD’10) Zian City, PR China, 11–15 October 2010, Springer Plus, 2, S8, doi:https://doi.org/10.1186/2193-1801-2-S1-S8

Download references

Acknowledgments

This work is supported by the UGC (University Grants Commission), and thanks to Amit Bera and Nabin Adhikari for their valuable concepts. The authors are also thankful to USGS, CGWB, GSI, NBSS & LUP, and IMD.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Senapati, U., Das, T.K. (2020). Assessment of Potential Land Degradation in Akarsa Watershed, West Bengal, Using GIS and Multi-influencing Factor Technique. In: Shit, P., Pourghasemi, H., Bhunia, G. (eds) Gully Erosion Studies from India and Surrounding Regions. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-23243-6_11

Download citation

Publish with us

Policies and ethics