Skip to main content

Adaptive Support for Representation Skills in a Chemistry ITS Is More Effective Than Static Support

  • Conference paper
  • First Online:
  • 3736 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11625))

Abstract

Multiple visual representations can enhance learning in STEM, provided that students have prerequisite representation skills to make sense of how the visuals show information and to fluently perceive meaning in the visuals. Prior research shows that instructional support for sense-making skills and perceptual fluency enhances STEM learning. This research also shows that students need different types of support, depending on their prior representation skills. Hence, instruction may be most effective if it adaptively assigns students to support for sense-making skills and perceptual fluency. We tested this hypothesis in an experiment with 45 undergraduates in an introductory chemistry course. Students were randomly assigned to a 6-week instructional module of an intelligent tutoring system (ITS) that (1) provided a static sequence of activities that supported sense-making skills and perceptual fluency or (2) adaptively assigned the activities. Results show that the adaptive version yielded significantly higher gains of chemistry knowledge. Our findings expand theories of representation skills and yield recommendations for ITSs with multiple visual representations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gilbert, J.: Visualization: An Emergent Field of Practice and Enquiry in Science Education. In: Gilbert, J., Reiner, M., Nakhleh, M. (eds.) Visualization: Theory and Practice in Science Education, vol. 3, pp. 3–24. Springer, Dordrecht (2008). https://doi.org/10.1007/978-1-4020-5267-5_1

    Chapter  Google Scholar 

  2. Ainsworth, S.: The educational value of multiple-representations when learning complex scientific concepts. In: Gilbert, J.K., Reiner, M., Nakama, A. (eds.) Visualization: Theory and Practice in Science Education, pp. 191–208. Springer, Dordrecht (2008). https://doi.org/10.1007/978-1-4020-5267-5_9

    Chapter  Google Scholar 

  3. NRC: Learning to Think Spatially. National Academies Press, Washington, D.C. (2006)

    Google Scholar 

  4. Ainsworth, S.: DeFT: a conceptual framework for considering learning with multiple representations. Learn. Instr. 16, 183–198 (2006)

    Article  Google Scholar 

  5. McElhaney, K., Chang, H., Chiu, J., Linn, M.: Evidence for effective uses of dynamic visualisations in science curriculum materials. Stud. Sci. Educ. 51, 49–85 (2015)

    Article  Google Scholar 

  6. Rau, M.A.: Conditions for the effectiveness of multiple visual representations in enhancing STEM learning. Educ. Psychol. Rev. 29, 717–761 (2017)

    Article  Google Scholar 

  7. Moore, J.W., Stanitski, C.L.: Chemistry: The Molecular Science. Cengage Learning, Stamford (2015)

    Google Scholar 

  8. Uttal, D., O’Doherty, K.: Comprehending and learning from visualizations: a developmental perspective. In: Gilbert, J. (ed.) Visualization: Theory and Practice in Science Education, pp. 53–72. Springer, Dordrecht (2008). https://doi.org/10.1007/978-1-4020-5267-5_3

    Chapter  Google Scholar 

  9. Rau, M.A.: Sequencing support for sense making and perceptual induction of connections among multiple visual representations. J. Educ. Psychol. 110, 811–833 (2018)

    Article  Google Scholar 

  10. Rau, M.A., Aleven, V., Rummel, N.: Making connections between multiple graphical representations of fractions: conceptual understanding facilitates perceptual fluency, but not vice versa. Instr. Sci. 45, 331–357 (2017)

    Article  Google Scholar 

  11. VanLehn, K.: The relative effectiveness of human tutoring, intelligent tutoring systems and other tutoring systems. Educ. Psychol. 46, 197–221 (2011)

    Article  Google Scholar 

  12. Schnotz, W.: An integrated model of text and picture comprehension. In: Mayer, R.E. (ed.) The Cambridge Handbook of Multimedia Learning, pp. 72–103. Cambridge University Press, New York (2014)

    Chapter  Google Scholar 

  13. Gentner, D., Markman, A.B.: Structure mapping in analogy and similarity. Am. Psychol. 52, 45–56 (1997)

    Article  Google Scholar 

  14. Ainsworth, S.: The multiple representation principle in multimedia learning. In: Mayer, R.E. (ed.) The Cambridge Handbook of Multimedia Learning, pp. 464–486. Cambridge University Press, New York (2014)

    Chapter  Google Scholar 

  15. Chi, M., Bassok, M., Lewis, M., Reimann, P., Glaser, R.: Self-explanations: how students study and use examples in learning to solve problems. Cogn. Sci. 13, 145–182 (1989)

    Article  Google Scholar 

  16. Koedinger, K.R., Corbett, A.T., Perfetti, C.: The knowledge-learning-instruction framework. Cogn. Sci. 36, 757–798 (2012)

    Article  Google Scholar 

  17. Chi, M.T.H., de Leeuw, N., Chiu, M.H., Lavancher, C.: Eliciting self-explanations improves understanding. Cogn. Sci. 18, 439–477 (1994)

    Google Scholar 

  18. diSessa, A.A., Sherin, B.L.: Meta-representation: an introduction. J. Math. Behav. 19, 385–398 (2000)

    Article  Google Scholar 

  19. Bodemer, D., Faust, U.: External and mental referencing of multiple representations. Comput. Hum. Behav. 22, 27–42 (2006)

    Article  Google Scholar 

  20. Seufert, T., Brünken, R.: Cognitive load and the format of instructional aids for coherence formation. Appl. Cogn. Psychol. 20, 321–331 (2006)

    Article  Google Scholar 

  21. Chi, M.T.H., Feltovitch, P.J., Glaser, R.: Categorization and representation of physics problems by experts and novices. Cogn. Sci. 5, 121–152 (1981)

    Article  Google Scholar 

  22. Gegenfurtner, A., Lehtinen, E., Säljö, R.: Expertise differences in the comprehension of visualizations. Educ. Psychol. Rev. 23, 523–552 (2011)

    Article  Google Scholar 

  23. Chase, W.G., Simon, H.A.: Perception in chess. Cogn. Psychol. 4, 55–81 (1973)

    Article  Google Scholar 

  24. Kellman, P.J., Massey, C.M.: Perceptual learning, cognition, and expertise. In: Ross, B.H. (ed.) The Psychology of Learning and Motivation, vol. 558, pp. 117–165. Elsevier Academic Press, New York (2013)

    Google Scholar 

  25. Richman, H., Gobet, F., Staszewski, J., Simon, H.: Perceptual and memory processes in the acquisition of expert performance. In: Ericsson, K. (ed.) The Road to Excellence?, pp. 167–187. Erlbaum Associates, Mahwah (1996)

    Google Scholar 

  26. Taber, K.S.: Revisiting the chemistry triplet. Chem. Educ. Res. Pract. 14, 156–168 (2013)

    Article  Google Scholar 

  27. Gibson, E.J.: Principles of Perceptual Learning and Development. Prentice Hall, New York (1969)

    Google Scholar 

  28. Kellman, P.J., Garrigan, P.B.: Perceptual learning and human expertise. Phys. Life Rev. 6, 53–84 (2009)

    Article  Google Scholar 

  29. Shanks, D.: Implicit learning. In: Lamberts, K., Goldstone, R. (eds.) Handbook of Cognition, pp. 202–220. Sage, London (2005)

    Google Scholar 

  30. Schooler, J.W., Fiore, S., Brandimonte, M.A.: At a loss From words: verbal overshadowing of perceptual memories. Psychol. Learn. Motiv. Adv. Res. Theor. 37, 291–340 (1997)

    Article  Google Scholar 

  31. Massey, C.M., Kellman, P.J., Roth, Z., Burke, T.: Perceptual learning and adaptive learning technology. In: Stein, N.L., Raudenbush, S.W. (eds.) Developmental Cognitive Science Goes to School, pp. 235–249. Routledge, New York (2011)

    Google Scholar 

  32. Rau, M.A., Aleven, V., Rummel, N.: Interleaved practice in multi-dimensional learning tasks: which dimension should we interleave? Learn. Instr. 23, 98–114 (2013)

    Article  Google Scholar 

  33. Rau, M.A., Aleven, V., Rummel, N., Pardos, Z.: How should intelligent tutoring systems sequence multiple graphical representations of fractions? A multi-methods study. Int. J. Artif. Intell. Educ. 24, 125–161 (2014)

    Article  Google Scholar 

  34. Bradley, J.-C., Lancashire, R., Lang, A., Williams, A.: The Spectral Game. J. Cheminformatics 1, 1–10 (2009)

    Article  Google Scholar 

  35. Rau, M.A., Aleven, V., Rummel, N.: Supporting students in making sense of connections and in becoming perceptually fluent in making connections among multiple graphical representations. J. Educ. Psychol. 109, 355–373 (2017)

    Article  Google Scholar 

  36. Rau, M.A., Wu, S.P.W.: ITS support for conceptual and perceptual connection making between multiple graphical representations. In: Conati, C., Heffernan, N., Mitrovic, A., Verdejo, M.F. (eds.) AIED 2015. LNCS (LNAI), vol. 9112, pp. 398–407. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19773-9_40

    Chapter  Google Scholar 

  37. Rau, M.A.: Making connections among multiple visual representations: how do sense-making competencies and perceptual fluency relate to learning of chemistry knowledge? Instr. Sci. (2017)

    Google Scholar 

  38. Rau, M.A., Zahn, M.: Sequencing support for sense making and perceptual fluency with visual representations: is there a learning progression? In: Kay, J., Luckin, R. (eds.) Rethinking Learning in the Digital Age. Making the Learning Sciences Count (ICLS) 2018, vol. 1, pp. 264–271. International Society of the Learning Sciences, London (2018)

    Google Scholar 

  39. Rau, M.A., Michaelis, J.E., Fay, N.: Connection making between multiple graphical representations: a multi-methods approach for domain-specific grounding of an intelligent tutoring system for chemistry. Comput. Educ. 82, 460–485 (2015)

    Article  Google Scholar 

  40. Blind for review (2017)

    Google Scholar 

  41. Corbett, A.T., Koedinger, K., Hadley, W.S.: Cognitive tutors: from the research classroom to all classrooms. In: Goodman, P.S. (ed.) Technology enhanced learning: Opportunities for Change, pp. 235–263. Lawrence Erlbaum Associates Publishers, Mahwah (2001)

    Google Scholar 

  42. Rau, M.A.: Do knowledge-component models need to incorporate representational competencies? Int. J. Artif. Intell. Educ. 27, 298–319 (2017)

    Article  Google Scholar 

  43. Park, O., Lee, J.: Adaptive instructional systems. In: Jonassen, D.H. (ed.) Handbook of Research for Educational Communications and Technology, pp. 651–658. Erlbaum, Mahwah (2003)

    Google Scholar 

  44. Rau, M.A., Wu, S.P.W.: Support for sense-making processes and inductive processes in connection-making among multiple visual representations. Cogn. Instr. 36, 361–395 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by NSF DUE-IUSE 1611782. We thank John Moore and Matthew Dorris for their advice and help with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina A. Rau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rau, M.A., Zahn, M., Misback, E., Burstyn, J. (2019). Adaptive Support for Representation Skills in a Chemistry ITS Is More Effective Than Static Support. In: Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (eds) Artificial Intelligence in Education. AIED 2019. Lecture Notes in Computer Science(), vol 11625. Springer, Cham. https://doi.org/10.1007/978-3-030-23204-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23204-7_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23203-0

  • Online ISBN: 978-3-030-23204-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics