Skip to main content

Towards the Identification of Propaedeutic Relations in Textbooks

  • Conference paper
  • First Online:
Artificial Intelligence in Education (AIED 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11625))

Included in the following conference series:

Abstract

As well-known, structuring knowledge and digital content has a tremendous potential to enhance meaningful learning. A straightforward approach is representing key concepts of the subject matter and organizing them in a knowledge structure by means of semantic relations. This results in hypergraphs with typed n-ary relationships, including the so-called prerequisite or propaedeutic relations among concepts. While extracting the whole concept graph from a textbook is our final goal, the focus of this paper is the identification of the propaedeutic relations among concepts. To this aim, we employ a method based on burst analysis and co-occurrence which recognizes, by means of temporal reasoning, prerequisite relations among concepts that share intense periods in the text. The experimental evaluation shows promising results for the extraction of propaedeutic relations without the support of external knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Library pybursts, https://pypi.org/project/pybursts/0.1.1/.

  2. 2.

    Note that the current formula takes into account all the relations where an Allen’s pattern is recognized, while we are working on an improved version that limits them to relations where the subsidiary concept exhibits high burstiness.

References

  1. Adorni, G., Dell’Orletta, F., Koceva, F., Torre, I., Venturi, G.: Extracting dependency relations from digital learning content. In: Serra, G., Tasso, C. (eds.) IRCDL 2018. CCIS, vol. 806, pp. 114–119. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73165-0_11

    Chapter  Google Scholar 

  2. Adorni, G., Koceva, F.: Designing a knowledge representation tool for subject matter structuring. In: Croitoru, M., Marquis, P., Rudolph, S., Stapleton, G. (eds.) GKR 2015. LNCS (LNAI), vol. 9501, pp. 1–14. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28702-7_1

    Chapter  Google Scholar 

  3. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)

    Article  Google Scholar 

  4. Alzetta, C., Koceva, F., Passalacqua, S., Torre, I., Adorni, G.: PRET: prerequisite-enriched terminology. A case study on educational texts. In: Proceedings of the Fifth Italian Conference on Computational Linguistics (2018)

    Google Scholar 

  5. Augenstein, I., Das, M., Riedel, S., Vikraman, L., McCallum, A.: SemEval 2017 task 10: scienceIE-extracting keyphrases and relations from scientific publications. In: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pp. 546–555 (2017)

    Google Scholar 

  6. Binder, J.: Package ‘bursts’: Markov model for bursty behavior in streams. R package version 1.0-1 (2014)

    Google Scholar 

  7. Brookshear, G., Brylow, D.: Networking and the Internet. In: Computer Science: An Overview, Global Edition. Pearson Education Limited (2015). Chapter 4

    Google Scholar 

  8. Brusilovsky, P., Vassileva, J.: Course sequencing techniques for large-scale web-based education. Int. J. Continuing Eng. Educ. Life long Learn. 13(1/2), 75–94 (2003). https://www.inderscience.com/info/inarticletoc.php?jcode=ijceell&year=2003&vol=13&issue=1/2

    Article  Google Scholar 

  9. Camacho-Collados, J., et al.: SemEval-2018 task 9: hypernym discovery. In: Proceedings of the 12th International Workshop on Semantic Evaluation, pp. 712–724 (2018)

    Google Scholar 

  10. Cimiano, P., Völker, J.: Text2Onto. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB 2005. LNCS, vol. 3513, pp. 227–238. Springer, Heidelberg (2005). https://doi.org/10.1007/11428817_21

    Chapter  Google Scholar 

  11. Clariana, R.B., Koul, R.: A computer-based approach for translating text into concept map-like representations. In: Proceedings of the First International Conference on Concept Mapping, pp. 14–17 (2004)

    Google Scholar 

  12. de Abreu, S.C., Bonamigo, T.L., Vieira, R.: A review on relation extraction with an eye on Portuguese. J. Braz. Comput. Soc. 19(4), 553 (2013)

    Article  Google Scholar 

  13. Dell’Orletta, F., Venturi, G., Cimino, A., Montemagni, S.: T2k2: a system for automatically extracting and organizing knowledge from texts. In: Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC-2014) (2014)

    Google Scholar 

  14. Devedzic, V.: Education and the semantic web. Int. J. Artif. Intell. Educ. 14(2), 165–191 (2004)

    Google Scholar 

  15. Fabbri, A.R., et al.: TutorialBank: a manually-collected corpus for prerequisite chains, survey extraction and resource recommendation. In: ACL (2018)

    Google Scholar 

  16. Fort, K., Nazarenko, A., Rosset, S.: Modeling the complexity of manual annotation tasks: a grid of analysis. In: International Conference on Computational Linguistics, pp. 895–910 (2012)

    Google Scholar 

  17. Gábor, K., Buscaldi, D., Schumann, A.-K., QasemiZadeh, B., Zargayouna, H., Charnois, T.: SemEval-2018 Task 7: semantic relation extraction and classification in scientific papers. In: Proceedings of International Workshop on Semantic Evaluation (SemEval-2018), New Orleans, LA, USA (2018)

    Google Scholar 

  18. Gagné, R.M.: Learning hierarchies. In: Merrill, M.D. (ed.) Instructional Design: Readings (Englewood Clis, NJ: Prentice-Hall, 1968), pp. 118–131 (1971)

    Google Scholar 

  19. Gasparetti, F., Medio, C.D., Limongelli, C., Sciarrone, F., Temperini, M.: Prerequisites between learning objects: automatic extraction based on a machine learning approach. Telematics Inform. 35(3), 595–610 (2018)

    Article  Google Scholar 

  20. Gordon, J., Zhu, L., Galstyan, A., Natarajan, P., Burns, G.: Modeling concept dependencies in a scientific corpus. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 866–875 (2016)

    Google Scholar 

  21. John, R.J.L., McTavish, T.S., Passonneau, R.J.: Semantic graphs for mathematics word problems based on mathematics terminology. In: EDM (Workshops) (2015)

    Google Scholar 

  22. Kleinberg, J.: Bursty and hierarchical structure in streams. Data Min. Knowl. Disc. 7(4), 373–397 (2003)

    Article  MathSciNet  Google Scholar 

  23. Lee, S., Park, Y., Yoon, W.C.: Burst analysis for automatic concept map creation with a single document. Expert Syst. Appl. 42(22), 8817–8829 (2015)

    Article  Google Scholar 

  24. Liang, C., Wu, Z., Huang, W., Giles, C.L.: Measuring prerequisite relations among concepts. In: EMNLP pp. 1668–1674 (2015)

    Google Scholar 

  25. Liang, C., Ye, J., Wang, S., Pursel, B., Giles, C.L.: Investigating active learning for concept prerequisite learning. In: Proceedings of EAAI (2018)

    Google Scholar 

  26. Ling, X., Weld, D.S.: Temporal information extraction. In: AAAI, vol. 10, pp. 1385–1390 (2010)

    Google Scholar 

  27. Liu, H., Ma, W., Yang, Y., Carbonell, J.: Learning concept graphs from online educational data. J. Artif. Intell. Res. 55, 1059–1090 (2016)

    Article  Google Scholar 

  28. Olson, D.L., Delen, D.: Advanced Data Mining Techniques. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-76917-0

    Book  MATH  Google Scholar 

  29. Pan, L., Wang, X., Li, C., Li, J., Tang, J.: Course concept extraction in MOOCs via embedding-based graph propagation. In: Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers), vol. 1, pp. 875–884 (2017)

    Google Scholar 

  30. Sarawagi, S., et al.: Information extraction. Found. Trends Databases 1(3), 261–377 (2008)

    Article  Google Scholar 

  31. Subasic, I., Berendt, B.: From bursty patterns to bursty facts: the effectiveness of temporal text mining for news. In: Proceedings of ECAI 2010: 19th European Conference on Artificial Intelligence, pp. 517–522 (2010)

    Google Scholar 

  32. Talukdar, P.P., Cohen, W.W.: Crowdsourced comprehension: predicting prerequisite structure in Wikipedia. In: Proceedings of the Seventh Workshop on Building Educational Applications Using NLP, pp. 307–315. Association for Computational Linguistics (2012)

    Google Scholar 

  33. Thenmozhi, D., Aravindan, C.: An automatic and clause-based approach to learn relations for ontologies. Comput. J. 59(6), 889–907 (2016)

    Article  MathSciNet  Google Scholar 

  34. Villalon, J., Calvo, R.A.: Concept extraction from student essays, towards concept map mining. In: Ninth IEEE International Conference on Advanced Learning Technologies, ICALT 2009, pp. 221–225. IEEE (2009)

    Google Scholar 

  35. Wang, S., et al.: Using prerequisites to extract concept maps from textbooks. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 317–326. ACM (2016)

    Google Scholar 

  36. Yoon, W.C., Lee, S., Lee, S.: Burst analysis of text document for automatic concept map creation. In: Ali, M., Pan, J.-S., Chen, S.-M., Horng, M.-F. (eds.) IEA/AIE 2014. LNCS (LNAI), vol. 8482, pp. 407–416. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07467-2_43

    Chapter  Google Scholar 

  37. Žitko, B., Stankov, S., Rosić, M., Grubišić, A.: Dynamic test generation over ontology-based knowledge representation in authoring shell. Expert Syst. Appl. 36(4), 8185–8196 (2009)

    Article  Google Scholar 

  38. Zouaq, A., Nkambou, R.: Building domain ontologies from text for educational purposes. IEEE Trans. Learn. Technol. 1(1), 49–62 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuele Passalacqua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adorni, G., Alzetta, C., Koceva, F., Passalacqua, S., Torre, I. (2019). Towards the Identification of Propaedeutic Relations in Textbooks. In: Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (eds) Artificial Intelligence in Education. AIED 2019. Lecture Notes in Computer Science(), vol 11625. Springer, Cham. https://doi.org/10.1007/978-3-030-23204-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23204-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23203-0

  • Online ISBN: 978-3-030-23204-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics