Electro-optic Photonic Circuits pp 107-122 | Cite as
Rogue Waves: Transition to Turbulence and Control Through Spatial Incoherence
Chapter
First Online:
- 336 Downloads
Abstract
Rogue waves are anomalously large amplitude phenomena developing suddenly out of normal waves, living for a short time and appearing with a probability much larger than expected from ordinary wave-amplitude statistics. These extreme events have been originally observed in ocean surfaces [1] and, later on, were observed in other physical contexts, like acoustic [2] and optical dynamics [3].
References
- 1.Müller P, Garrett C, Osborne A (2005) Rogue waves. Oceanography 18(3):66. http://dx.doi.org/10.5670/oceanog.2005.30CrossRefGoogle Scholar
- 2.Ganshin AN, Efimov VB, Kolmakov GV, Mezhov-Deglin LP, McClintock PV (2008) Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium. Phys Rev Lett 101(6):065303Google Scholar
- 3.Solli DR, Ropers C, Koonath P, Jalali B (2007) Optical rogue waves. Nature 450(7172):1054–1057ADSCrossRefGoogle Scholar
- 4.Armaroli A, Conti C, Biancalana F (2015) Rogue solitons in optical fibers: a dynamical process in a complex energy landscape? Optica 2(5):497–504ADSCrossRefGoogle Scholar
- 5.Birkholz S, Nibbering ETJ, Brée C, Skupin S, Demircan A, Genty G, Steinmeyer G (2013) Spatiotemporal rogue events in optical multiple filamentation. Phys Rev Lett 111(24):243903Google Scholar
- 6.Dudley JM, Dias F, Erkintalo M, Genty G (2014) Instabilities, breathers and rogue waves in optics. Nat Photon 8(10):755–764ADSCrossRefGoogle Scholar
- 7.Lecaplain C, Grelu P, Soto-Crespo JM, Akhmediev N (2012) Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser. Phys Rev Lett 108(23):233901Google Scholar
- 8.Onorato M, Waseda T, Toffoli A, Cavaleri L, Gramstad O, Janssen PA, Kinoshita T, Monbaliu J, Mori N, Osborne AR et al (2009) Statistical properties of directional ocean waves: the role of the modulational instability in the formation of extreme events. Phys Rev Lett 102(11):114502Google Scholar
- 9.Shats M, Punzmann H, Xia H (2010) Capillary rogue waves. Phys Rev Lett 104(10):104503ADSCrossRefGoogle Scholar
- 10.Arecchi FT, Bortolozzo U, Montina A, Residori S (2011) Granularity and inhomogeneity are the joint generators of optical rogue waves. Phys Rev Lett 106(15):153901ADSCrossRefGoogle Scholar
- 11.Höhmann R, Kuhl U, Stöckmann H-J, Kaplan L, Heller EJ (2010) Freak waves in the linear regime: a microwave study. Phys Rev Lett 104(9):093901ADSCrossRefGoogle Scholar
- 12.Liu C, Van Der Wel RE, Rotenberg N, Kuipers L, Krauss TF, Di Falco A, Fratalocchi A (2015) Triggering extreme events at the nanoscale in photonic seas. Nat Phys 11(4):358–363ADSCrossRefGoogle Scholar
- 13.Conforti M, Mussot A, Fatome J, Picozzi A, Pitois S, Finot C, Haelterman M, Kibler B, Michel C, Millot G (2015) Turbulent dynamics of an incoherently pumped passive optical fiber cavity: quasisolitons, dispersive waves, and extreme events. Phys Rev A 91(2):023823ADSCrossRefGoogle Scholar
- 14.Hammani K, Kibler B, Finot C, Picozzi A (2010) Emergence of rogue waves from optical turbulence. Phys Lett A 374(34):3585–3589ADSzbMATHCrossRefGoogle Scholar
- 15.Randoux S, Walczak P, Onorato M, Suret P (2016) Nonlinear random optical waves: integrable turbulence, rogue waves and intermittency. Phys D 333:323–335MathSciNetCrossRefGoogle Scholar
- 16.Suret P, El Koussaifi R, Tikan A, Evain C, Randoux S, Szwaj C, Bielawski S (2016) Single-shot observation of optical rogue waves in integrable turbulence using time microscopy. Nat Commun 7Google Scholar
- 17.Walczak P, Randoux S, Suret P (2015) Optical rogue waves in integrable turbulence. Phys Rev Lett 114(14):143903ADSMathSciNetCrossRefGoogle Scholar
- 18.Bonatto C, Feyereisen M, Barland S, Giudici M, Masoller C, Rios Leite JR, Tredicce JR (2011) Deterministic optical rogue waves. Phys Rev Lett 107(5):053901Google Scholar
- 19.Gibson CJ, Yao AM, Oppo GL (2016) Optical rogue waves in vortex turbulence. Phys Rev Lett 116(4):043903Google Scholar
- 20.Marsal N, Caullet V, Wolfersberger D, Sciamanna M (2014) Spatial rogue waves in a photorefractive pattern-forming system. Opt Lett 39(12):3690–3693ADSCrossRefGoogle Scholar
- 21.Montina A, Bortolozzo U, Residori S, Arecchi FT (2009) Non-gaussian statistics and extreme waves in a nonlinear optical cavity. Phys Rev Lett 103(17):173901ADSCrossRefGoogle Scholar
- 22.Pisarchik AN, Jaimes-Reátegui R, Sevilla-Escoboza R, Huerta-Cuellar G, Taki M (2011) Rogue waves in a multistable system. Phys Rev Lett 107(27):274101Google Scholar
- 23.Selmi F, Coulibaly S, Loghmari Z, Sagnes I, Beaudoin G, Clerc MG, Barbay S (2016) Spatiotemporal chaos induces extreme events in an extended microcavity laser. Phys Rev Lett 116(1):013901Google Scholar
- 24.Onorato M, Residori S, Bortolozzo U, Montina A, Arecchi FT (2013) Rogue waves and their generating mechanisms in different physical contexts. Phys Rep 528(2):47–89ADSMathSciNetCrossRefGoogle Scholar
- 25.Pierangeli D, Di Mei F, Conti C, Agranat AJ, DelRe E (2015) Spatial rogue waves in photorefractive ferroelectrics. Phys Rev Lett 115(9):093901Google Scholar
- 26.Landau LD, Lifshitz EM (2013) Fluid mechanics: Landau and Lifshitz: course of theoretical physics, vol 6. Elsevier, AmsterdamGoogle Scholar
- 27.Avila K, Moxey D, de Lozar A, Avila M, Barkley D, Hof B (2011) The onset of turbulence in pipe flow. Science 333(6039):192–196ADSzbMATHCrossRefGoogle Scholar
- 28.Grossmann S (2000) The onset of shear flow turbulence. Rev Mod Phys 72(2):603ADSMathSciNetCrossRefGoogle Scholar
- 29.Masaki S, Keiichi T (2016) A universal transition to turbulence in channel flow. Nat PhysGoogle Scholar
- 30.Boyer F, Falcon E (2008) Wave turbulence on the surface of a ferrofluid in a magnetic field. Phys Rev Lett 101(24):244502ADSCrossRefGoogle Scholar
- 31.Picozzi A, Garnier J, Hansson T, Suret P, Randoux S, Millot G, Christodoulides DN (2014) Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics. Phys Rep 542(1):1–132ADSMathSciNetCrossRefGoogle Scholar
- 32.Nazarenko S (2011) Wave turbulence, vol 825. Springer Science & Business Media, BerlinGoogle Scholar
- 33.Mitschke F, Steinmeyer G, Schwache A (1996) Generation of one-dimensional optical turbulence. Phys D 96(1):251–258CrossRefGoogle Scholar
- 34.Mork J, Tromborg B, Mark J (1992) Chaos in semiconductor lasers with optical feedback: theory and experiment. IEEE J Quantum Electron 28(1):93–108ADSCrossRefGoogle Scholar
- 35.Aragoneses A, Carpi L, Tarasov N, Churkin DV, Torrent MC, Masoller C, Turitsyn SK (2016) Unveiling temporal correlations characteristic of a phase transition in the output intensity of a fiber laser. Phys Rev Lett 116(3):033902Google Scholar
- 36.Turitsyn SK, Babin SA, Turitsyna EG, Falkovich GE, Podivilov EV, Churkin DV (2013) Optical wave turbulence. Adv Wave Turbul 83:113–164MathSciNetzbMATHCrossRefGoogle Scholar
- 37.Turitsyna EG, Smirnov SV, Sugavanam S, Tarasov N, Shu X, Babin SA, Podivilov EV, Churkin DV, Falkovich G, Turitsyn SK (2013) The laminar-turbulent transition in a fibre laser. Nat Photon 7(10):783–786ADSCrossRefGoogle Scholar
- 38.Wabnitz S (2014) Optical turbulence in fiber lasers. Opt Lett 39(6):1362–1365ADSCrossRefGoogle Scholar
- 39.Bortolozzo U, Laurie J, Nazarenko S, Residori S (2009) Optical wave turbulence and the condensation of light. JOSA B 26(12):2280–2284ADSCrossRefGoogle Scholar
- 40.Laurie J, Bortolozzo U, Nazarenko S, Residori S (2012) One-dimensional optical wave turbulence: experiment and theory. Phys Rep 514(4):121–175ADSCrossRefGoogle Scholar
- 41.Shih M-F, Jeng C-C, Sheu F-W, Lin C-Y (2002) Spatiotemporal optical modulation instability of coherent light in noninstantaneous nonlinear media. Phys Rev Lett 88(13):133902ADSCrossRefGoogle Scholar
- 42.Sun C, Jia S, Barsi C, Rica S, Picozzi A, Fleischer JW (2012) Observation of the kinetic condensation of classical waves. Nat Phys 8(6):470–474ADSCrossRefGoogle Scholar
- 43.Onorato M, Osborne AR, Serio M (2006) Modulational instability in crossing sea states: A possible mechanism for the formation of freak waves. Phys Rev Lett 96(1):014503Google Scholar
- 44.Pierangeli D, Parravicini J, Di Mei F, Parravicini GB, Agranat AJ, DelRe E (2014) Photorefractive light needles in glassy nanodisordered kntn. Opt Lett 39(6):1657–1660ADSCrossRefGoogle Scholar
- 45.Pierangeli D, Ferraro M, Di Mei F, Di Domenico G, De Oliveira CEM, Agranat AJ, DelRe E (2016) Super-crystals in composite ferroelectrics. Nat Commun 7:10674Google Scholar
- 46.DelRe E, Spinozzi E, Agranat AJ, Conti C (2011) Scale-free optics and diffractionless waves in nanodisordered ferroelectrics. Nat Photon 5(1):39–42ADSCrossRefGoogle Scholar
- 47.DelRe E, Di Mei F, Parravicini J, Parravicini G, Agranat AJ, Conti C (2015) Subwavelength anti-diffracting beams propagating over more than 1,000 rayleigh lengths. Nat PhotonGoogle Scholar
- 48.Di Mei F, Caramazza P, Pierangeli D, Di Domenico G, Ilan H, Agranat AJ, Di Porto P, DelRe E (2016) Intrinsic negative mass from nonlinearity. Phys Rev Lett 116(15):153902Google Scholar
- 49.DelRe E, Crosignani B, Di Porto P (2009) Photorefractive solitons and their underlying nonlocal physics. Prog Optics 53:153–200ADSCrossRefGoogle Scholar
- 50.Qieni L, Han J, Dai H, Ge B, Zhao S (2015) Visualization of spatial-temporal evolution of light-induced refractive index in mn: Fe: Ktn co-doped crystal based on digital holographic interferometry. IEEE Photon J 7(4):1–11Google Scholar
- 51.Agafontsev DS, Zakharov VE (2015) Integrable turbulence and formation of rogue waves. Nonlinearity 28(8):2791ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 52.Leonetti M, Karbasi S, Mafi A, Conti C (2014) Light focusing in the anderson regime. arXiv:1407.8062
- 53.Segev M, Silberberg Y, Christodoulides DN (2013) Anderson localization of light. Nat Photon 7(3):197–204ADSCrossRefGoogle Scholar
- 54.Solli DR, Herink G, Jalali B, Ropers C (2012) Fluctuations and correlations in modulation instability. Nat Photon 6(7):463–468ADSCrossRefGoogle Scholar
- 55.Goodman JW (1975) Statistical properties of laser speckle patterns. In: Laser speckle and related phenomena. Springer, Berlin, pp 9–75Google Scholar
- 56.Pierangeli D, Di Mei F, Parravicini J, Parravicini GB, Agranat AJ, Conti C, DelRe E (2014) Observation of an intrinsic nonlinearity in the electro-optic response of freezing relaxors ferroelectrics. Opt Mater Express 4(8):1487–1493Google Scholar
- 57.Pierangeli D, Di Mei F, Di Domenico G, Agranat AJ, Conti C, DelRe E (2016a) Turbulent transitions in optical wave propagation. Phys Rev Lett 117(18):183902ADSCrossRefGoogle Scholar
- 58.Chen Z, Segev M, Christodoulides DN (2003) Experiments on partially coherent photorefractive solitons. J Opt A: Pure Appl Opt 5(6):S389ADSCrossRefGoogle Scholar
- 59.Mitchell M, Chen Z, Shih M, Segev M (1996) Self-trapping of partially spatially incoherent light. Phys Rev Lett 77(3):490ADSCrossRefGoogle Scholar
- 60.Bromberg Y, Lahini Y, Small E, Silberberg Y (2010) Hanbury brown and twiss interferometry with interacting photons. Nat Photon 4(10):721–726ADSCrossRefGoogle Scholar
- 61.Derevyanko S, Small E (2012) Nonlinear propagation of an optical speckle field. Phys Rev A 85(5):053816ADSCrossRefGoogle Scholar
- 62.Fressengeas N, Wolfersberger D, Maufoy J, Kugel G (1998) Build up mechanisms of (1+ 1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons. Opt Commun 145(1):393–400ADSCrossRefGoogle Scholar
- 63.DelRe E, Palange E (2006) Optical nonlinearity and existence conditions for quasi-steady-state photorefractive solitons. JOSA B 23(11):2323–2327ADSCrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019