Skip to main content

Rogue Waves: Transition to Turbulence and Control Through Spatial Incoherence

  • Chapter
  • First Online:
Book cover Electro-optic Photonic Circuits

Part of the book series: Springer Theses ((Springer Theses))

  • 552 Accesses

Abstract

Rogue waves are anomalously large amplitude phenomena developing suddenly out of normal waves, living for a short time and appearing with a probability much larger than expected from ordinary wave-amplitude statistics. These extreme events have been originally observed in ocean surfaces [1] and, later on, were observed in other physical contexts, like acoustic [2] and optical dynamics [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Müller P, Garrett C, Osborne A (2005) Rogue waves. Oceanography 18(3):66. http://dx.doi.org/10.5670/oceanog.2005.30

    Article  Google Scholar 

  2. Ganshin AN, Efimov VB, Kolmakov GV, Mezhov-Deglin LP, McClintock PV (2008) Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium. Phys Rev Lett 101(6):065303

    Google Scholar 

  3. Solli DR, Ropers C, Koonath P, Jalali B (2007) Optical rogue waves. Nature 450(7172):1054–1057

    Article  ADS  Google Scholar 

  4. Armaroli A, Conti C, Biancalana F (2015) Rogue solitons in optical fibers: a dynamical process in a complex energy landscape? Optica 2(5):497–504

    Article  ADS  Google Scholar 

  5. Birkholz S, Nibbering ETJ, Brée C, Skupin S, Demircan A, Genty G, Steinmeyer G (2013) Spatiotemporal rogue events in optical multiple filamentation. Phys Rev Lett 111(24):243903

    Google Scholar 

  6. Dudley JM, Dias F, Erkintalo M, Genty G (2014) Instabilities, breathers and rogue waves in optics. Nat Photon 8(10):755–764

    Article  ADS  Google Scholar 

  7. Lecaplain C, Grelu P, Soto-Crespo JM, Akhmediev N (2012) Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser. Phys Rev Lett 108(23):233901

    Google Scholar 

  8. Onorato M, Waseda T, Toffoli A, Cavaleri L, Gramstad O, Janssen PA, Kinoshita T, Monbaliu J, Mori N, Osborne AR et al (2009) Statistical properties of directional ocean waves: the role of the modulational instability in the formation of extreme events. Phys Rev Lett 102(11):114502

    Google Scholar 

  9. Shats M, Punzmann H, Xia H (2010) Capillary rogue waves. Phys Rev Lett 104(10):104503

    Article  ADS  Google Scholar 

  10. Arecchi FT, Bortolozzo U, Montina A, Residori S (2011) Granularity and inhomogeneity are the joint generators of optical rogue waves. Phys Rev Lett 106(15):153901

    Article  ADS  Google Scholar 

  11. Höhmann R, Kuhl U, Stöckmann H-J, Kaplan L, Heller EJ (2010) Freak waves in the linear regime: a microwave study. Phys Rev Lett 104(9):093901

    Article  ADS  Google Scholar 

  12. Liu C, Van Der Wel RE, Rotenberg N, Kuipers L, Krauss TF, Di Falco A, Fratalocchi A (2015) Triggering extreme events at the nanoscale in photonic seas. Nat Phys 11(4):358–363

    Article  ADS  Google Scholar 

  13. Conforti M, Mussot A, Fatome J, Picozzi A, Pitois S, Finot C, Haelterman M, Kibler B, Michel C, Millot G (2015) Turbulent dynamics of an incoherently pumped passive optical fiber cavity: quasisolitons, dispersive waves, and extreme events. Phys Rev A 91(2):023823

    Article  ADS  Google Scholar 

  14. Hammani K, Kibler B, Finot C, Picozzi A (2010) Emergence of rogue waves from optical turbulence. Phys Lett A 374(34):3585–3589

    Article  ADS  MATH  Google Scholar 

  15. Randoux S, Walczak P, Onorato M, Suret P (2016) Nonlinear random optical waves: integrable turbulence, rogue waves and intermittency. Phys D 333:323–335

    Article  MathSciNet  Google Scholar 

  16. Suret P, El Koussaifi R, Tikan A, Evain C, Randoux S, Szwaj C, Bielawski S (2016) Single-shot observation of optical rogue waves in integrable turbulence using time microscopy. Nat Commun 7

    Google Scholar 

  17. Walczak P, Randoux S, Suret P (2015) Optical rogue waves in integrable turbulence. Phys Rev Lett 114(14):143903

    Article  ADS  MathSciNet  Google Scholar 

  18. Bonatto C, Feyereisen M, Barland S, Giudici M, Masoller C, Rios Leite JR, Tredicce JR (2011) Deterministic optical rogue waves. Phys Rev Lett 107(5):053901

    Google Scholar 

  19. Gibson CJ, Yao AM, Oppo GL (2016) Optical rogue waves in vortex turbulence. Phys Rev Lett 116(4):043903

    Google Scholar 

  20. Marsal N, Caullet V, Wolfersberger D, Sciamanna M (2014) Spatial rogue waves in a photorefractive pattern-forming system. Opt Lett 39(12):3690–3693

    Article  ADS  Google Scholar 

  21. Montina A, Bortolozzo U, Residori S, Arecchi FT (2009) Non-gaussian statistics and extreme waves in a nonlinear optical cavity. Phys Rev Lett 103(17):173901

    Article  ADS  Google Scholar 

  22. Pisarchik AN, Jaimes-Reátegui R, Sevilla-Escoboza R, Huerta-Cuellar G, Taki M (2011) Rogue waves in a multistable system. Phys Rev Lett 107(27):274101

    Google Scholar 

  23. Selmi F, Coulibaly S, Loghmari Z, Sagnes I, Beaudoin G, Clerc MG, Barbay S (2016) Spatiotemporal chaos induces extreme events in an extended microcavity laser. Phys Rev Lett 116(1):013901

    Google Scholar 

  24. Onorato M, Residori S, Bortolozzo U, Montina A, Arecchi FT (2013) Rogue waves and their generating mechanisms in different physical contexts. Phys Rep 528(2):47–89

    Article  ADS  MathSciNet  Google Scholar 

  25. Pierangeli D, Di Mei F, Conti C, Agranat AJ, DelRe E (2015) Spatial rogue waves in photorefractive ferroelectrics. Phys Rev Lett 115(9):093901

    Google Scholar 

  26. Landau LD, Lifshitz EM (2013) Fluid mechanics: Landau and Lifshitz: course of theoretical physics, vol 6. Elsevier, Amsterdam

    Google Scholar 

  27. Avila K, Moxey D, de Lozar A, Avila M, Barkley D, Hof B (2011) The onset of turbulence in pipe flow. Science 333(6039):192–196

    Article  ADS  MATH  Google Scholar 

  28. Grossmann S (2000) The onset of shear flow turbulence. Rev Mod Phys 72(2):603

    Article  ADS  MathSciNet  Google Scholar 

  29. Masaki S, Keiichi T (2016) A universal transition to turbulence in channel flow. Nat Phys

    Google Scholar 

  30. Boyer F, Falcon E (2008) Wave turbulence on the surface of a ferrofluid in a magnetic field. Phys Rev Lett 101(24):244502

    Article  ADS  Google Scholar 

  31. Picozzi A, Garnier J, Hansson T, Suret P, Randoux S, Millot G, Christodoulides DN (2014) Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics. Phys Rep 542(1):1–132

    Article  ADS  MathSciNet  Google Scholar 

  32. Nazarenko S (2011) Wave turbulence, vol 825. Springer Science & Business Media, Berlin

    Google Scholar 

  33. Mitschke F, Steinmeyer G, Schwache A (1996) Generation of one-dimensional optical turbulence. Phys D 96(1):251–258

    Article  Google Scholar 

  34. Mork J, Tromborg B, Mark J (1992) Chaos in semiconductor lasers with optical feedback: theory and experiment. IEEE J Quantum Electron 28(1):93–108

    Article  ADS  Google Scholar 

  35. Aragoneses A, Carpi L, Tarasov N, Churkin DV, Torrent MC, Masoller C, Turitsyn SK (2016) Unveiling temporal correlations characteristic of a phase transition in the output intensity of a fiber laser. Phys Rev Lett 116(3):033902

    Google Scholar 

  36. Turitsyn SK, Babin SA, Turitsyna EG, Falkovich GE, Podivilov EV, Churkin DV (2013) Optical wave turbulence. Adv Wave Turbul 83:113–164

    Article  MathSciNet  MATH  Google Scholar 

  37. Turitsyna EG, Smirnov SV, Sugavanam S, Tarasov N, Shu X, Babin SA, Podivilov EV, Churkin DV, Falkovich G, Turitsyn SK (2013) The laminar-turbulent transition in a fibre laser. Nat Photon 7(10):783–786

    Article  ADS  Google Scholar 

  38. Wabnitz S (2014) Optical turbulence in fiber lasers. Opt Lett 39(6):1362–1365

    Article  ADS  Google Scholar 

  39. Bortolozzo U, Laurie J, Nazarenko S, Residori S (2009) Optical wave turbulence and the condensation of light. JOSA B 26(12):2280–2284

    Article  ADS  Google Scholar 

  40. Laurie J, Bortolozzo U, Nazarenko S, Residori S (2012) One-dimensional optical wave turbulence: experiment and theory. Phys Rep 514(4):121–175

    Article  ADS  Google Scholar 

  41. Shih M-F, Jeng C-C, Sheu F-W, Lin C-Y (2002) Spatiotemporal optical modulation instability of coherent light in noninstantaneous nonlinear media. Phys Rev Lett 88(13):133902

    Article  ADS  Google Scholar 

  42. Sun C, Jia S, Barsi C, Rica S, Picozzi A, Fleischer JW (2012) Observation of the kinetic condensation of classical waves. Nat Phys 8(6):470–474

    Article  ADS  Google Scholar 

  43. Onorato M, Osborne AR, Serio M (2006) Modulational instability in crossing sea states: A possible mechanism for the formation of freak waves. Phys Rev Lett 96(1):014503

    Google Scholar 

  44. Pierangeli D, Parravicini J, Di Mei F, Parravicini GB, Agranat AJ, DelRe E (2014) Photorefractive light needles in glassy nanodisordered kntn. Opt Lett 39(6):1657–1660

    Article  ADS  Google Scholar 

  45. Pierangeli D, Ferraro M, Di Mei F, Di Domenico G, De Oliveira CEM, Agranat AJ, DelRe E (2016) Super-crystals in composite ferroelectrics. Nat Commun 7:10674

    Google Scholar 

  46. DelRe E, Spinozzi E, Agranat AJ, Conti C (2011) Scale-free optics and diffractionless waves in nanodisordered ferroelectrics. Nat Photon 5(1):39–42

    Article  ADS  Google Scholar 

  47. DelRe E, Di Mei F, Parravicini J, Parravicini G, Agranat AJ, Conti C (2015) Subwavelength anti-diffracting beams propagating over more than 1,000 rayleigh lengths. Nat Photon

    Google Scholar 

  48. Di Mei F, Caramazza P, Pierangeli D, Di Domenico G, Ilan H, Agranat AJ, Di Porto P, DelRe E (2016) Intrinsic negative mass from nonlinearity. Phys Rev Lett 116(15):153902

    Google Scholar 

  49. DelRe E, Crosignani B, Di Porto P (2009) Photorefractive solitons and their underlying nonlocal physics. Prog Optics 53:153–200

    Article  ADS  Google Scholar 

  50. Qieni L, Han J, Dai H, Ge B, Zhao S (2015) Visualization of spatial-temporal evolution of light-induced refractive index in mn: Fe: Ktn co-doped crystal based on digital holographic interferometry. IEEE Photon J 7(4):1–11

    Google Scholar 

  51. Agafontsev DS, Zakharov VE (2015) Integrable turbulence and formation of rogue waves. Nonlinearity 28(8):2791

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Leonetti M, Karbasi S, Mafi A, Conti C (2014) Light focusing in the anderson regime. arXiv:1407.8062

  53. Segev M, Silberberg Y, Christodoulides DN (2013) Anderson localization of light. Nat Photon 7(3):197–204

    Article  ADS  Google Scholar 

  54. Solli DR, Herink G, Jalali B, Ropers C (2012) Fluctuations and correlations in modulation instability. Nat Photon 6(7):463–468

    Article  ADS  Google Scholar 

  55. Goodman JW (1975) Statistical properties of laser speckle patterns. In: Laser speckle and related phenomena. Springer, Berlin, pp 9–75

    Google Scholar 

  56. Pierangeli D, Di Mei F, Parravicini J, Parravicini GB, Agranat AJ, Conti C, DelRe E (2014) Observation of an intrinsic nonlinearity in the electro-optic response of freezing relaxors ferroelectrics. Opt Mater Express 4(8):1487–1493

    Google Scholar 

  57. Pierangeli D, Di Mei F, Di Domenico G, Agranat AJ, Conti C, DelRe E (2016a) Turbulent transitions in optical wave propagation. Phys Rev Lett 117(18):183902

    Article  ADS  Google Scholar 

  58. Chen Z, Segev M, Christodoulides DN (2003) Experiments on partially coherent photorefractive solitons. J Opt A: Pure Appl Opt 5(6):S389

    Article  ADS  Google Scholar 

  59. Mitchell M, Chen Z, Shih M, Segev M (1996) Self-trapping of partially spatially incoherent light. Phys Rev Lett 77(3):490

    Article  ADS  Google Scholar 

  60. Bromberg Y, Lahini Y, Small E, Silberberg Y (2010) Hanbury brown and twiss interferometry with interacting photons. Nat Photon 4(10):721–726

    Article  ADS  Google Scholar 

  61. Derevyanko S, Small E (2012) Nonlinear propagation of an optical speckle field. Phys Rev A 85(5):053816

    Article  ADS  Google Scholar 

  62. Fressengeas N, Wolfersberger D, Maufoy J, Kugel G (1998) Build up mechanisms of (1+ 1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons. Opt Commun 145(1):393–400

    Article  ADS  Google Scholar 

  63. DelRe E, Palange E (2006) Optical nonlinearity and existence conditions for quasi-steady-state photorefractive solitons. JOSA B 23(11):2323–2327

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Di Domenico .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Di Domenico, G. (2019). Rogue Waves: Transition to Turbulence and Control Through Spatial Incoherence. In: Electro-optic Photonic Circuits. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-23189-7_9

Download citation

Publish with us

Policies and ethics