Intrinsic Negative-Mass from Nonlinearity

  • Giuseppe Di DomenicoEmail author
Part of the Springer Theses book series (Springer Theses)


Scale-free-optics, or diffraction-cancellation is a propagation regime (discovered by DelRe et al. in [1], but first observation can be traced back to [2]) in which the electromagnetic fields is no longer governed by the Helmholtz equation but by a Klein–Gordon-type equation. This is achieved in a disordered out of equilibrium para-electric crystal near the phase transition. In this condition beam propagation is affected by a giant and purely diffusive nonlinearity which has profound implications for wave dynamics. In particular in this regime optical propagation occurs without any limit associated to the optical wavelength [3] (scale-free-optics), where the diffraction is absent, not simply compensated by nonlinear index change or the presence of waveguide (both conditions in which the spatial dimensions scale with \(\lambda \)). The phenomenon appears also to be intensity and size independent [4], but it is nonetheless nonlinear. Experiments that highlight the nonlinear nature of diffraction cancellation are beam-beam interaction phenomena, which involve beam attraction, crossing, and beam spiraling, three interaction phenomena that are similar to those normally associated to solitons [5]. The unique features of the system allow us to observe anti-diffraction of light and light beams that can be focused to dimensions smaller than the diffraction limit [6, 7].


  1. 1.
    DelRe E, Spinozzi E, Agranat AJ, Conti C (2011) Scale-free optics and diffractionless waves in nanodisordered ferroelectrics. Nat. Photonics 5(1):39–42Google Scholar
  2. 2.
    Crosignani B, Degasperis A, DelRe E, Di Porto P, Agranat AJ (1999) Nonlinear optical diffraction effects and solitons due to anisotropic charge-diffusion-based self-interaction. Phys Rev Lett 82(8):1664ADSCrossRefGoogle Scholar
  3. 3.
    Parravicini J, Di Mei F, Conti C, Agranat AJ, DelRe E (2011) Diffraction cancellation over multiple wavelengths in photorefractive dipolar glasses. Opt Express 19(24):24109–24114ADSCrossRefGoogle Scholar
  4. 4.
    Di Mei F, Pierangeli D, Parravicini J, Conti C, Agranat AJ, DelRe E (2015) Observation of diffraction cancellation for nonparaxial beams in the scale-free-optics regime. Phys Rev A 92(1):013835Google Scholar
  5. 5.
    Chen Z, Morandotti R (2012) Nonlinear photonics and novel optical phenomena, vol 170. Springer, BerlinGoogle Scholar
  6. 6.
    DelRe E, Di Mei F, Parravicini J, Parravicini G, Agranat AJ, Conti C (2015) Subwavelength anti-diffracting beams propagating over more than 1,000 rayleigh lengths. Nat PhotonGoogle Scholar
  7. 7.
    Di Mei F, Parravicini J, Pierangeli D, Conti C, Agranat A, DelRe E (2014) Anti-diffracting beams through the diffusive optical nonlinearity. Opt Express 22(25):31434–31439Google Scholar
  8. 8.
    Morris MS, Thorne KS (1988) Wormholes in spacetime and their use for interstellar travel: a tool for teaching general relativity. Am J Phys 56(5):395–412ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Morris MS, Thorne KS, Yurtsever U (1988) Wormholes, time machines, and the weak energy condition. Phys Rev Lett 61(13):1446ADSCrossRefGoogle Scholar
  10. 10.
    Batz S, Peschel U (2013) Diametrically driven self-accelerating pulses in a photonic crystal fiber. Phys Rev Lett 110(19):193901ADSCrossRefGoogle Scholar
  11. 11.
    Firstenberg O, Peyronel T, Liang Q-Y, Gorshkov AV, Lukin MD, Vuletić V (2013) Attractive photons in a quantum nonlinear medium. Nature 502(7469):71–75ADSCrossRefGoogle Scholar
  12. 12.
    Zhengyou L, Xixiang Z, Yiwei M, Zhu YY, Yang Z, Ting Chan C, Sheng P (2000) Locally resonant sonic materials. Science 289(5485):1734–1736ADSCrossRefGoogle Scholar
  13. 13.
    Sakaguchi H, Malomed BA (2004) Dynamics of positive-and negative-mass solitons in optical lattices and inverted traps. J Phys B 37(7):1443ADSCrossRefGoogle Scholar
  14. 14.
    Yao Shanshan, Zhou Xiaoming, Gengkai Hu (2008) Experimental study on negative effective mass in a 1d mass-spring system. New J Phys 10(4):043020CrossRefGoogle Scholar
  15. 15.
    Charles K (2005) Introduction to solid state physics. Wiley, AmsterdamGoogle Scholar
  16. 16.
    Wimmer M, Regensburger A, Bersch C, Miri M-A, Batz S, Onishchukov G, Christodoulides DN, Peschel U (2013) Optical diametric drive acceleration through action-reaction symmetry breaking. Nat Phys 9(12):780–784ADSCrossRefGoogle Scholar
  17. 17.
    Christodoulides DN, Coskun TH (1996) Diffraction-free planar beams in unbiased photorefractive media. Opt. Lett. 21(18):1460–1462ADSCrossRefGoogle Scholar
  18. 18.
    Crosignani B, DelRe E, Di Porto P, Degasperis A (1998) Self-focusing and self-trapping in unbiased centrosymmetric photorefractive media. Opt Lett 23(12):912–914ADSCrossRefGoogle Scholar
  19. 19.
    Bokov AA, Ye Z-G (2006) Recent progress in relaxor ferroelectrics with perovskite structure. In: Frontiers of ferroelectricity. Springer, Berlin, pp 31–52Google Scholar
  20. 20.
    Gumennik A, Kurzweil-Segev Y, Agranat AJ (2011) Electrooptical effects in glass forming liquids of dipolar nano-clusters embedded in a paraelectric environment. Opt Mater Express 1(3):332–343ADSCrossRefGoogle Scholar
  21. 21.
    Hofmeister R, Yagi S, Yariv A, Agranat AJ (1993) Growth and characterization of kltn: Cu, v photorefractive crystals. J Cryst Growth 131(486):137Google Scholar
  22. 22.
    Gumennik A, Agranat AJ, Shachar I, Hass M (2005) Thermal stability of a slab waveguide implemented by \(\alpha \) particles implantation in potassium lithium tantalate niobate. Appl Phys Lett 87(25):251917Google Scholar
  23. 23.
    Gumennik A, Ilan H, Fathei R, Israel A, Agranat AJ, Shachar I, Hass M (2007) Design methodology of refractive index engineering by implantation of high-energy particles in electro-optic materials. Appl Opt 46(19):4132–4137ADSCrossRefGoogle Scholar
  24. 24.
    Chang Y-C, Wang C, Yin S, Hoffman RC, Mott AG (2013) Giant electro-optic effect in nanodisordered KTN crystals. Opt Lett 38(22):4574–4577ADSCrossRefGoogle Scholar
  25. 25.
    Chang Y-C, Wang C, Yin S, Hoffman RC, Mott AG (2013) Kovacs effect enhanced broadband large field of view electro-optic modulators in nanodisordered KTN crystals. Opt. Express 21(15):17760–17768ADSCrossRefGoogle Scholar
  26. 26.
    Parravicini J, Conti C, Agranat AJ, DelRe E (2012) Programming scale-free optics in disordered ferroelectrics. Opt Lett 37(12):2355–2357ADSCrossRefGoogle Scholar
  27. 27.
    Barak A, Peleg O, Stucchio C, Soffer A, Segev Mordechai (2008) Observation of soliton tunneling phenomena and soliton ejection. Phys Rev Lett 100(15):153901ADSCrossRefGoogle Scholar
  28. 28.
    Linzon Y, Morandotti R, Volatier M, Aimez V, Ares R, Bar-Ad S (2007) Nonlinear scattering and trapping by local photonic potentials. Phys Rev Lett 99(13):133901Google Scholar
  29. 29.
    Peccianti Marco, Dyadyusha Andriy, Kaczmarek Malgosia, Assanto Gaetano (2008) Escaping solitons from a trapping potential. Phys Rev Lett 101(15):153902ADSCrossRefGoogle Scholar
  30. 30.
    Chen Z, Segev M, Christodoulides DN (2012) Optical spatial solitons: historical overview and recent advances. Rep Prog Phys 75(8):086401ADSCrossRefGoogle Scholar
  31. 31.
    Efremidis NK, Hizanidis K (2008) Disordered lattice solitons. Phys Rev Lett 101(14):143903Google Scholar
  32. 32.
    Pierangeli D, Di Mei F, Conti C, Agranat AJ, DelRe E (2015) Spatial rogue waves in photorefractive ferroelectrics. Phys Rev Lett 115(9):093901Google Scholar
  33. 33.
    Pierangeli D, Flammini M, Di Mei F, Parravicini J, de Oliveira CEM, Agranat AJ, DelRe E (2015) Continuous solitons in a lattice nonlinearity. Phys Rev Lett 114(20):203901Google Scholar
  34. 34.
    Trillo S, Torruellas W (2001) Spatial Solitons. Springer, Physics and astronomy online library. ISBN 9783540416531,
  35. 35.
    Eisenberg HS, Silberberg Y, Morandotti R, Aitchison JS (2000) Diffraction management. Phys Rev Lett 85(9):1863ADSCrossRefGoogle Scholar
  36. 36.
    Firstenberg Ofer, London Paz, Shuker Moshe, Ron Amiram, Davidson Nir (2009) Elimination, reversal and directional bias of optical diffraction. Nat Phys 5(9):665–668CrossRefGoogle Scholar
  37. 37.
    Kosaka Hideo, Kawashima Takayuki, Tomita Akihisa, Notomi Masaya, Tamamura Toshiaki, Sato Takashi, Kawakami Shojiro (1999) Self-collimating phenomena in photonic crystals. Appl Phys Lett 74(9):1212–1214ADSCrossRefGoogle Scholar
  38. 38.
    Staliunas Kestutis, Herrero Ramon (2006) Nondiffractive propagation of light in photonic crystals. Phys Rev E 73(1):016601ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Electrical EngineeringTel Aviv UniversityTel AvivIsrael

Personalised recommendations