Skip to main content

Intrinsic Negative-Mass from Nonlinearity

  • Chapter
  • First Online:
Electro-optic Photonic Circuits

Part of the book series: Springer Theses ((Springer Theses))

  • 546 Accesses

Abstract

Scale-free-optics, or diffraction-cancellation is a propagation regime (discovered by DelRe et al. in [1], but first observation can be traced back to [2]) in which the electromagnetic fields is no longer governed by the Helmholtz equation but by a Klein–Gordon-type equation. This is achieved in a disordered out of equilibrium para-electric crystal near the phase transition. In this condition beam propagation is affected by a giant and purely diffusive nonlinearity which has profound implications for wave dynamics. In particular in this regime optical propagation occurs without any limit associated to the optical wavelength [3] (scale-free-optics), where the diffraction is absent, not simply compensated by nonlinear index change or the presence of waveguide (both conditions in which the spatial dimensions scale with \(\lambda \)). The phenomenon appears also to be intensity and size independent [4], but it is nonetheless nonlinear. Experiments that highlight the nonlinear nature of diffraction cancellation are beam-beam interaction phenomena, which involve beam attraction, crossing, and beam spiraling, three interaction phenomena that are similar to those normally associated to solitons [5]. The unique features of the system allow us to observe anti-diffraction of light and light beams that can be focused to dimensions smaller than the diffraction limit [6, 7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DelRe E, Spinozzi E, Agranat AJ, Conti C (2011) Scale-free optics and diffractionless waves in nanodisordered ferroelectrics. Nat. Photonics 5(1):39–42

    Google Scholar 

  2. Crosignani B, Degasperis A, DelRe E, Di Porto P, Agranat AJ (1999) Nonlinear optical diffraction effects and solitons due to anisotropic charge-diffusion-based self-interaction. Phys Rev Lett 82(8):1664

    Article  ADS  Google Scholar 

  3. Parravicini J, Di Mei F, Conti C, Agranat AJ, DelRe E (2011) Diffraction cancellation over multiple wavelengths in photorefractive dipolar glasses. Opt Express 19(24):24109–24114

    Article  ADS  Google Scholar 

  4. Di Mei F, Pierangeli D, Parravicini J, Conti C, Agranat AJ, DelRe E (2015) Observation of diffraction cancellation for nonparaxial beams in the scale-free-optics regime. Phys Rev A 92(1):013835

    Google Scholar 

  5. Chen Z, Morandotti R (2012) Nonlinear photonics and novel optical phenomena, vol 170. Springer, Berlin

    Google Scholar 

  6. DelRe E, Di Mei F, Parravicini J, Parravicini G, Agranat AJ, Conti C (2015) Subwavelength anti-diffracting beams propagating over more than 1,000 rayleigh lengths. Nat Photon

    Google Scholar 

  7. Di Mei F, Parravicini J, Pierangeli D, Conti C, Agranat A, DelRe E (2014) Anti-diffracting beams through the diffusive optical nonlinearity. Opt Express 22(25):31434–31439

    Google Scholar 

  8. Morris MS, Thorne KS (1988) Wormholes in spacetime and their use for interstellar travel: a tool for teaching general relativity. Am J Phys 56(5):395–412

    Article  ADS  MathSciNet  Google Scholar 

  9. Morris MS, Thorne KS, Yurtsever U (1988) Wormholes, time machines, and the weak energy condition. Phys Rev Lett 61(13):1446

    Article  ADS  Google Scholar 

  10. Batz S, Peschel U (2013) Diametrically driven self-accelerating pulses in a photonic crystal fiber. Phys Rev Lett 110(19):193901

    Article  ADS  Google Scholar 

  11. Firstenberg O, Peyronel T, Liang Q-Y, Gorshkov AV, Lukin MD, Vuletić V (2013) Attractive photons in a quantum nonlinear medium. Nature 502(7469):71–75

    Article  ADS  Google Scholar 

  12. Zhengyou L, Xixiang Z, Yiwei M, Zhu YY, Yang Z, Ting Chan C, Sheng P (2000) Locally resonant sonic materials. Science 289(5485):1734–1736

    Article  ADS  Google Scholar 

  13. Sakaguchi H, Malomed BA (2004) Dynamics of positive-and negative-mass solitons in optical lattices and inverted traps. J Phys B 37(7):1443

    Article  ADS  Google Scholar 

  14. Yao Shanshan, Zhou Xiaoming, Gengkai Hu (2008) Experimental study on negative effective mass in a 1d mass-spring system. New J Phys 10(4):043020

    Article  Google Scholar 

  15. Charles K (2005) Introduction to solid state physics. Wiley, Amsterdam

    Google Scholar 

  16. Wimmer M, Regensburger A, Bersch C, Miri M-A, Batz S, Onishchukov G, Christodoulides DN, Peschel U (2013) Optical diametric drive acceleration through action-reaction symmetry breaking. Nat Phys 9(12):780–784

    Article  ADS  Google Scholar 

  17. Christodoulides DN, Coskun TH (1996) Diffraction-free planar beams in unbiased photorefractive media. Opt. Lett. 21(18):1460–1462

    Article  ADS  Google Scholar 

  18. Crosignani B, DelRe E, Di Porto P, Degasperis A (1998) Self-focusing and self-trapping in unbiased centrosymmetric photorefractive media. Opt Lett 23(12):912–914

    Article  ADS  Google Scholar 

  19. Bokov AA, Ye Z-G (2006) Recent progress in relaxor ferroelectrics with perovskite structure. In: Frontiers of ferroelectricity. Springer, Berlin, pp 31–52

    Google Scholar 

  20. Gumennik A, Kurzweil-Segev Y, Agranat AJ (2011) Electrooptical effects in glass forming liquids of dipolar nano-clusters embedded in a paraelectric environment. Opt Mater Express 1(3):332–343

    Article  ADS  Google Scholar 

  21. Hofmeister R, Yagi S, Yariv A, Agranat AJ (1993) Growth and characterization of kltn: Cu, v photorefractive crystals. J Cryst Growth 131(486):137

    Google Scholar 

  22. Gumennik A, Agranat AJ, Shachar I, Hass M (2005) Thermal stability of a slab waveguide implemented by \(\alpha \) particles implantation in potassium lithium tantalate niobate. Appl Phys Lett 87(25):251917

    Google Scholar 

  23. Gumennik A, Ilan H, Fathei R, Israel A, Agranat AJ, Shachar I, Hass M (2007) Design methodology of refractive index engineering by implantation of high-energy particles in electro-optic materials. Appl Opt 46(19):4132–4137

    Article  ADS  Google Scholar 

  24. Chang Y-C, Wang C, Yin S, Hoffman RC, Mott AG (2013) Giant electro-optic effect in nanodisordered KTN crystals. Opt Lett 38(22):4574–4577

    Article  ADS  Google Scholar 

  25. Chang Y-C, Wang C, Yin S, Hoffman RC, Mott AG (2013) Kovacs effect enhanced broadband large field of view electro-optic modulators in nanodisordered KTN crystals. Opt. Express 21(15):17760–17768

    Article  ADS  Google Scholar 

  26. Parravicini J, Conti C, Agranat AJ, DelRe E (2012) Programming scale-free optics in disordered ferroelectrics. Opt Lett 37(12):2355–2357

    Article  ADS  Google Scholar 

  27. Barak A, Peleg O, Stucchio C, Soffer A, Segev Mordechai (2008) Observation of soliton tunneling phenomena and soliton ejection. Phys Rev Lett 100(15):153901

    Article  ADS  Google Scholar 

  28. Linzon Y, Morandotti R, Volatier M, Aimez V, Ares R, Bar-Ad S (2007) Nonlinear scattering and trapping by local photonic potentials. Phys Rev Lett 99(13):133901

    Google Scholar 

  29. Peccianti Marco, Dyadyusha Andriy, Kaczmarek Malgosia, Assanto Gaetano (2008) Escaping solitons from a trapping potential. Phys Rev Lett 101(15):153902

    Article  ADS  Google Scholar 

  30. Chen Z, Segev M, Christodoulides DN (2012) Optical spatial solitons: historical overview and recent advances. Rep Prog Phys 75(8):086401

    Article  ADS  Google Scholar 

  31. Efremidis NK, Hizanidis K (2008) Disordered lattice solitons. Phys Rev Lett 101(14):143903

    Google Scholar 

  32. Pierangeli D, Di Mei F, Conti C, Agranat AJ, DelRe E (2015) Spatial rogue waves in photorefractive ferroelectrics. Phys Rev Lett 115(9):093901

    Google Scholar 

  33. Pierangeli D, Flammini M, Di Mei F, Parravicini J, de Oliveira CEM, Agranat AJ, DelRe E (2015) Continuous solitons in a lattice nonlinearity. Phys Rev Lett 114(20):203901

    Google Scholar 

  34. Trillo S, Torruellas W (2001) Spatial Solitons. Springer, Physics and astronomy online library. ISBN 9783540416531, https://books.google.it/books?id=_fmHJVruaogC

  35. Eisenberg HS, Silberberg Y, Morandotti R, Aitchison JS (2000) Diffraction management. Phys Rev Lett 85(9):1863

    Article  ADS  Google Scholar 

  36. Firstenberg Ofer, London Paz, Shuker Moshe, Ron Amiram, Davidson Nir (2009) Elimination, reversal and directional bias of optical diffraction. Nat Phys 5(9):665–668

    Article  Google Scholar 

  37. Kosaka Hideo, Kawashima Takayuki, Tomita Akihisa, Notomi Masaya, Tamamura Toshiaki, Sato Takashi, Kawakami Shojiro (1999) Self-collimating phenomena in photonic crystals. Appl Phys Lett 74(9):1212–1214

    Article  ADS  Google Scholar 

  38. Staliunas Kestutis, Herrero Ramon (2006) Nondiffractive propagation of light in photonic crystals. Phys Rev E 73(1):016601

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Di Domenico .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Di Domenico, G. (2019). Intrinsic Negative-Mass from Nonlinearity. In: Electro-optic Photonic Circuits. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-23189-7_8

Download citation

Publish with us

Policies and ethics