Self-suppression of Bessel Beam Side Lobes for High-Contrast Light Sheet Microscopy

  • Giuseppe Di DomenicoEmail author
Part of the Springer Theses book series (Springer Theses)


An ideal illumination for light sheet fluorescence microscopy entails both a localized and a propagation invariant optical field. Both Bessel beams and Airy beams satisfy these conditions, but their non-diffracting feature comes at the cost of the presence of high-energy side lobes that notably degrade the imaging contrast and induce photobleaching. This chapter discusses the results of the article Self-suppression of Bessel beam side lobes for high-contrast light sheet microscopy. We demonstrate the use of a light droplet illumination whose side lobes are self-suppressed by interfering Bessel beams of specific k-vectors. Our droplet illumination (see previous Chap.  4) readily achieves a \(50\%\) extinction of the out-of-focus light, providing a more efficient energy localization and an increased imaging contrast obtained in a standard light sheet microscope. This work is currently under revision in Optica (OSA).


  1. 1.
    Conchello J-A, Lichtman JW (2005) Optical sectioning microscopy. Nat Methods 2(12):920CrossRefGoogle Scholar
  2. 2.
    Ji N, Magee JC, Betzig E (2008) High-speed, low-photodamage nonlinear imaging using passive pulse splitters. Nat Methods 5(2):197–202CrossRefGoogle Scholar
  3. 3.
    Santi PA (2011) Light sheet fluorescence microscopy: a review. J Histochem Cytochem 59 (2):129–138CrossRefGoogle Scholar
  4. 4.
    Weber M, Mickoleit M, Huisken J (2014) Light sheet microscopy. Methods Cell Biol 123:193–215CrossRefGoogle Scholar
  5. 5.
    Buytaert JAN, Dirckx JJ (2007) Design and quantitative resolution measurements of an optical virtual sectioning three-dimensional imaging technique for biomedical specimens, featuring two-micrometer slicing resolution. J Biomed Opt 12(1):014039ADSCrossRefGoogle Scholar
  6. 6.
    Dodt H-U, Leischner U, Schierloh A, Jährling N, Mauch CP, Deininger K, Deussing JM, Eder M, Zieglgänsberger W, Becker K (2007) Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods 4(4):331CrossRefGoogle Scholar
  7. 7.
    Keller PJ, Dodt H-U (2012) Light sheet microscopy of living or cleared specimens. Curr Opin Neurobiol 22(1):138–143CrossRefGoogle Scholar
  8. 8.
    Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322(5904):1065–1069ADSCrossRefGoogle Scholar
  9. 9.
    Breuninger T, Greger K, Stelzer EHK (2007) Lateral modulation boosts image quality in single plane illumination fluorescence microscopy. Opt Lett 32(13):1938–1940ADSCrossRefGoogle Scholar
  10. 10.
    Keller PJ, Schmidt AD, Santella A, Khairy K, Bao Z, Wittbrodt J, Stelzer EHK (2010) Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy. Nat Methods 7(8):637–642CrossRefGoogle Scholar
  11. 11.
    Neil MAA, Juškaitis R, Wilson T (1997) Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt Lett 22(24):1905–1907ADSCrossRefGoogle Scholar
  12. 12.
    Ahrens MB, Orger MB, Robson DN, Li JM, Keller PJ (2013) Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat Methods 10(5):413–420CrossRefGoogle Scholar
  13. 13.
    Chen B-C, Legant WR, Wang K, Shao L, Milkie DE, Davidson MW, Janetopoulos C, Wu XS, Hammer JA, Liu Z et al. (2014) Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346(6208):1257998CrossRefGoogle Scholar
  14. 14.
    Planchon TA, Gao L, Milkie DE, Davidson MW, Galbraith JA, Galbraith CG, Betzig E (2011) Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat Methods 8(5):417–423CrossRefGoogle Scholar
  15. 15.
    Vettenburg T, Dalgarno HIC, Nylk J, Coll-Lladó C, Ferrier DEK, Čižmár T, Gunn-Moore FJ, Dholakia K (2014) Light-sheet microscopy using an Airy beam. Nat Methods 11(5):541–544CrossRefGoogle Scholar
  16. 16.
    Antonacci G, Di Domenico G, Silvestri S, DelRe E, Ruocco G (2017) Diffraction-free light droplets for axially-resolved volume imaging. Sci Rep 7(1):17ADSCrossRefGoogle Scholar
  17. 17.
    He F, Yu J, Tan Y, Chu W, Zhou C, Cheng Y, Sugioka K (2017) Tailoring femtosecond 1.5-\(\mu \)m bessel beams for manufacturing high-aspect-ratio through-silicon vias. Sci Rep 7:40785Google Scholar
  18. 18.
    Mori S (2015) Side lobe suppression of a Bessel beam for high aspect ratio laser processing. Precis Eng 39:79–85CrossRefGoogle Scholar
  19. 19.
    Durnin JJ, Miceli Jr JJ, Eberly JH (1987) Diffraction-free beams. Phys Rev Lett 58(15):1499ADSCrossRefGoogle Scholar
  20. 20.
    Gori F, Guattari G, Padovani C (1987) Bessel-gauss beams. Opt Commun 64(6):491–495ADSCrossRefGoogle Scholar
  21. 21.
    Sheppard CJR, Wilson T (1978) Gaussian-beam theory of lenses with annular aperture. IEE J Microw Opt Acoust 2(4):105–112CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Electrical EngineeringTel Aviv UniversityTel AvivIsrael

Personalised recommendations