Electro-optic Photonic Circuits pp 1-17 | Cite as
Introduction to Nonlinear Optics in Photorefractive Media
Chapter
First Online:
- 358 Downloads
Abstract
In this chapter nonlinear optical beams are introduced and specialized to spatial solitons in photorefractive media. In particular, we present the electro-optic effect, ferroelectricity, relaxor ferroelectrics, the mechanism of photorefraction, and the physics underlying photorefractive solitons.
References
- 1.Brosi JM, Koos C, Andreani LC, Waldow M, Leuthold J, Freude W (2008) High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt Express 16(6):4177–4191ADSCrossRefGoogle Scholar
- 2.Ouskova E, Sio LD, Vergara R, White TJ, Tabiryan N, Bunning TJ (2014) Ultra-fast solid state electro-optical modulator based on liquid crystal polymer and liquid crystal composites. Appl Phys Lett 105(23):231122ADSCrossRefGoogle Scholar
- 3.Qianfan X, Schmidt B, Pradhan S, Lipson M (2005) Micrometre-scale silicon electro-optic modulator. Nature 435(7040):325–327ADSCrossRefGoogle Scholar
- 4.Roth M, Tseitlin M, Angert N (2005) Oxide crystals for electro-optic Q-switching of lasers. Glass Phys. Chem. 31:86–95CrossRefGoogle Scholar
- 5.Malinowski A, Vu KT, Chen KK, Nilsson J, Jeong Y, Alam S, Lin D, Richardson DJ (2009) High power pulsed fiber MOPA system incorporating electro-optic modulator based adaptive pulse shaping. Opt Express 17(23):20927–20937ADSCrossRefGoogle Scholar
- 6.Goetz PG, Rabinovich WS, Mahon R, Murphy JL, Ferraro MS, Suite MR, Smith WR, Burris HR, Moore CI, Schultz WW et al (2012) Modulating retro-reflector lasercom systems for small unmanned vehicles. IEEE J Sel Areas Commun 30(5):986–992CrossRefGoogle Scholar
- 7.Guarino A, Poberaj G, Rezzonico D, Degl’Innocenti R, Günter P (2007) Electro-optically tunable microring resonators in lithium niobate. Nat Photonics 1(7):407–410ADSCrossRefGoogle Scholar
- 8.Wang M, Yingxin X, Fang Z, Liao Y, Wang P, Chu W, Qiao L, Lin J, Fang W, Cheng Y (2017) On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes. Opt Express 25(1):124–129ADSCrossRefGoogle Scholar
- 9.Goodby JW, Collings PJ, Kato T, Tschierske C, Gleeson HF, Raynes P (2014) Handbook of liquid crystals. Wiley-VCH, WeinheimCrossRefGoogle Scholar
- 10.Ashkin A, Boyd GD, Dziedzic JM, Smith RG, Ballman AA, Levinstein JJ, Nassau K (1966) Optically-induced refractive index inhomogeneities in LiNbO\(_3\) and LiTaO\(_3\). Appl Phys Lett 9(1):72–74Google Scholar
- 11.Cavalieri AL, Fritz DM, Lee SH, Bucksbaum PH, Reis DA, Rudati J, Mills DM, Fuoss PH, Stephenson GB, Kao CC et al (2005) Clocking femtosecond X rays. Phys Rev Lett 94(11):114801ADSCrossRefGoogle Scholar
- 12.Yariv A, Yeh P (1984) Optical waves in crystals, vol 10. Wiley, New YorkGoogle Scholar
- 13.Born M, Wolf E (1980) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Elsevier, AmsterdamzbMATHGoogle Scholar
- 14.Aillerie M, Theofanous N, Fontana MD (2000) Measurement of the electro-optic coefficients: description and comparison of the experimental techniques. Appl Phys B 70(3):317–334ADSCrossRefGoogle Scholar
- 15.Park S-E, Shrout TR (1997a) Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers. IEEE Trans Ultrason Ferroelectr Freq Control 44(5):1140–1147Google Scholar
- 16.Shrout TR, Park SE, Lopath PD, Meyer RJ, Ritter TA, Shung KK (1998) Innovations in piezoelectric materials for ultrasound transducers. In: Medical imaging 1998: ultrasonic transducer engineering, vol 3341. SPIE-International Society for Optical Engineering, pp 174–184Google Scholar
- 17.Uchino K (1996) Piezoelectric actuators and ultrasonic motors, vol 1. Springer Science & Business Media, BerlinCrossRefGoogle Scholar
- 18.Dong WD, Finkel P, Amin A, Lynch CS (2012) Giant electro-mechanical energy conversion in [011] cut ferroelectric single crystals. Appl Phys Lett 100(4):042903ADSCrossRefGoogle Scholar
- 19.Booth ER, Wilbur ML (2004) Acoustic aspects of active-twist rotor control. J Am Helicopter Soc 1(49):3–10CrossRefGoogle Scholar
- 20.Bokov AA, Ye Z-G (2006) Recent progress in relaxor ferroelectrics with perovskite structure. Frontiers of ferroelectricity. Springer, Berlin, pp 31–52Google Scholar
- 21.Shvartsman VV, Lupascu DC (2012) Lead-free relaxor ferroelectrics. J Am Ceram Soc 95(1):1–26CrossRefGoogle Scholar
- 22.Ahart M, Somayazulu M, Cohen RE, Ganesh P, Dera P, Mao H-K, Hemley RJ, Ren Y, Liermann P, Wu Z (2008) Origin of morphotropic phase boundaries in ferroelectrics. Nature 451(7178):545–548ADSCrossRefGoogle Scholar
- 23.Lummen TTA, Gu Y, Wang J, Lei S, Xue F, Kumar A, Barnes AT, Barnes E, Denev S, Belianinov A et al (2014) Thermotropic phase boundaries in classic ferroelectrics. Nat Commun 5:3172Google Scholar
- 24.Borisevich AY, Eliseev EA, Morozovska AN, Cheng C-J, Lin J-Y, Chu Y-H, Kan D, Takeuchi I, Nagarajan V, Kalinin SV (2012) Atomic-scale evolution of modulated phases at the ferroelectric–antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction. Nat Commun 3:775ADSCrossRefGoogle Scholar
- 25.Kutnjak Z, Petzelt J, Blinc R (2006) The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441(7096):956–959ADSCrossRefGoogle Scholar
- 26.Tian H, Meng X, Hu C, Tan P, Cao X, Shi G, Zhou Z, Zhang R (2016) Origin of giant piezoelectric effect in lead-free K\(_{1-x}\)Na\(_x\)Ta\(_{1-y}\)Nb\(_y\)O\(_3\) single crystals. Sci Rep 6Google Scholar
- 27.Park S-E, Shrout TR (1997b) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82(4):1804–1811ADSCrossRefGoogle Scholar
- 28.Samara GA (2003) The relaxational properties of compositionally disordered ABO\(_3\) perovskites. J Phys Condens Matter 15(9):R367Google Scholar
- 29.Lang SB, Chan HLW (2007) Frontiers of ferroelectricity: a special issue of the journal of materials science. Springer Science & Business Media, BerlinGoogle Scholar
- 30.Glinchuk MD, Eliseev EA, Morozovska AN (2008) Superparaelectric phase in the ensemble of noninteracting ferroelectric nanoparticles. Phys Rev B 78(13):134107ADSCrossRefGoogle Scholar
- 31.Rivera I, Kumar A, Ortega N, Katiyar RS, Lushnikov S (2009) Divide line between relaxor, diffused ferroelectric, ferroelectric and dielectric. Solid State Commun 149(3):172–176ADSCrossRefGoogle Scholar
- 32.Toulouse J, DiAntonio P, Vugmeister BE, Wang XM, Knauss LA (1992) Precursor effects and ferroelectric macroregions in KTa\(_{1--x}\)Nb\(_x\)O\(_3\) and K\(_{1- y}\)Li\(_y\)TaO\(_3\). Phys Rev Lett 68(2):232Google Scholar
- 33.Xu G, Zhong Z, Bing Y, Ye ZG, Shirane G (2006) Electric-field-induced redistribution of polar nano-regions in a relaxor ferroelectric. Nat Mater 5(2):134–140ADSCrossRefGoogle Scholar
- 34.Xu G, Wen J, Stock C, Gehring PM (2008) Phase instability induced by polar nanoregions in a relaxor ferroelectric system. Nat Mater 7(7):562–566ADSCrossRefGoogle Scholar
- 35.Akbarzadeh AR, Prosandeev S, Walter EJ, Al-Barakaty A, Bellaiche L (2012) Finite-temperature properties of Ba (Zr, Ti) O\(_3\) relaxors from first principles. Phys Rev Lett 108(25):257601Google Scholar
- 36.Kleemann W (2014) Relaxor ferroelectrics: cluster glass ground state via random fields and random bonds. Phys Status Solidi B 251(10):1993–2002ADSCrossRefGoogle Scholar
- 37.Manley ME, Lynn JW, Abernathy DL, Specht ED, Delaire O, Bishop AR, Sahul R, Budai JD (2014) Phonon localization drives polar nanoregions in a relaxor ferroelectric. Nat Commun 5:3683ADSCrossRefGoogle Scholar
- 38.Phelan D, Stock C, Rodriguez-Rivera JA, Chi S, Leão J, Long X, Xie Y, Bokov AA, Ye ZG, Ganesh P et al (2014) Role of random electric fields in relaxors. Proc Natl Acad Sci 111(5):1754–1759ADSCrossRefGoogle Scholar
- 39.Pirc R, Kutnjak Z (2014) Electric-field dependent freezing in relaxor ferroelectrics. Phys Rev B 89(18):184110ADSCrossRefGoogle Scholar
- 40.Pirc R, Blinc R (1999) Spherical random-bond-random-field model of relaxor ferroelectrics. Phys Rev B 60(19):13470ADSCrossRefGoogle Scholar
- 41.Bokov AA, Ye Z-G (2012) Dielectric relaxation in relaxor ferroelectrics. J Adv Dielectr 2(02):1241010CrossRefGoogle Scholar
- 42.Ishai PB, De Oliveira CEM, Ryabov Y, Feldman Y, Agranat AJ (2004) Glass-forming liquid kinetics manifested in a KTN: Cu crystal. Phys Rev B 70(13):132104ADSCrossRefGoogle Scholar
- 43.Ishai PB, Agranat AJ, Feldman Y (2006) Confinement kinetics in a KTN: Cu crystal: experiment and theory. Phys Rev B 73(10):104104ADSCrossRefGoogle Scholar
- 44.Viehland D, Jang SJ, Cross LE, Wuttig M (1990) Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J Appl Phys 68(6):2916–2921ADSCrossRefGoogle Scholar
- 45.Wang S, Yi M, Bai-Xiang X (2016) A phase-field model of relaxor ferroelectrics based on random field theory. Int J Solids Struct 83:142–153CrossRefGoogle Scholar
- 46.Pirc R, Blinc R (2007) Vogel-fulcher freezing in relaxor ferroelectrics. Phys Rev B 76(2):020101ADSCrossRefGoogle Scholar
- 47.Prosandeev S, Wang D, Akbarzadeh AR, Dkhil B, Bellaiche L (2013) Field-induced percolation of polar nanoregions in relaxor ferroelectrics. Phys Rev Lett 110(20):207601Google Scholar
- 48.Pugachev AM, Kovalevskii VI, Surovtsev NV, Kojima S, Prosandeev SA, Raevski IP, Raevskaya SI (2012) Broken local symmetry in paraelectric batio 3 proved by second harmonic generation. Phys Rev Lett 108(24):247601ADSCrossRefGoogle Scholar
- 49.Yokota H, Uesu Y, Malibert C, Kiat J-M (2007) Second-harmonic generation and x-ray diffraction studies of the pretransitional region and polar phase in relaxor K\(_{(1--x)}\)Li\(_x\)TaO\(_3\). Phys Rev B 75(18):184113Google Scholar
- 50.Chang Y-C, Wang C, Yin S, Hoffman RC, Mott AG (2013a) Giant electro-optic effect in nanodisordered KTN crystals. Opt Lett 38(22):4574–4577ADSCrossRefGoogle Scholar
- 51.Chang Y-C, Wang C, Yin S, Hoffman RC, Mott AG (2013b) Kovacs effect enhanced broadband large field of view electro-optic modulators in nanodisordered KTN crystals. Opt Express 21(15):17760–17768ADSCrossRefGoogle Scholar
- 52.Gumennik A, Kurzweil-Segev Y, Agranat AJ (2011) Electrooptical effects in glass forming liquids of dipolar nano-clusters embedded in a paraelectric environment. Opt Mater Express 1(3):332–343ADSCrossRefGoogle Scholar
- 53.Yeh P (1993) Introduction to photorefractive nonlinear optics, vol 14. Wiley-Interscience, HobokenGoogle Scholar
- 54.Boyd RW (2003) Nonlinear optics. Handbook of laser technology and applications (three-volume set). Taylor & Francis, Abingdon, pp 161–183Google Scholar
- 55.Kukhtarev NV, Markov VB, Odulov SG, Soskin MS, Vinetskii VL (1978) Holographic storage in electrooptic crystals. I. steady state. Ferroelectrics 22(1):949–960CrossRefGoogle Scholar
- 56.Crosignani B, Di Porto P, Degasperis A, Segev M, Trillo S (1997) Three-dimensional optical beam propagation and solitons in photorefractive crystals. JOSA B 14(11):3078–3090ADSCrossRefGoogle Scholar
- 57.DelRe E, Ciattoni A, Crosignani B, Tamburrini M (1998a) Approach to space-charge field description in photorefractive crystals. JOSA B 15(5):1469–1475ADSCrossRefGoogle Scholar
- 58.DelRe E, Crosignani B, Di Porto P (2009) Photorefractive solitons and their underlying nonlocal physics. Prog Opt 53:153–200ADSCrossRefGoogle Scholar
- 59.DelRe E, D’Ercole A, Palange E (2005) Mechanisms supporting long propagation regimes of photorefractive solitons. Phys Rev E 71(3):036610ADSCrossRefGoogle Scholar
- 60.Agrawal GP (2007) Nonlinear fiber optics. Academic Press, CambridgezbMATHGoogle Scholar
- 61.Segev M, Valley GC, Crosignani B, Diporto P, Yariv A (1994) Steady-state spatial screening solitons in photorefractive materials with external applied field. Phys Rev Lett 73(24):3211ADSCrossRefGoogle Scholar
- 62.Duree GC Jr, Shultz JL, Salamo GJ, Segev M, Yariv A, Crosignani B, Di Porto D, Sharp EJ, Neurgaonkar RR (1993) Observation of self-trapping of an optical beam due to the photorefractive effect. Phys Rev Lett 71(4):533ADSCrossRefGoogle Scholar
- 63.Segev M, Agranat AJ (1997) Spatial solitons in centrosymmetric photorefractive media. Opt Lett 22(17):1299–1301ADSCrossRefGoogle Scholar
- 64.Chen Z, Garrett MH, Valley GC, Mitchell M, Shih M-F, Segev M (1996) Steady-state dark photorefractive screening solitons. Opt Lett 21(9):629–631ADSCrossRefGoogle Scholar
- 65.Wan W, Jia S, Fleischer JW (2007) Dispersive superfluid-like shock waves in nonlinear optics. Nat Phys 3(1):46–51CrossRefGoogle Scholar
- 66.DelRe E, D’Ercole A, Agranat AJ (2003) Emergence of linear wave segments and predictable traits in saturated nonlinear media. Opt Lett 28(4):260–262ADSCrossRefGoogle Scholar
- 67.DelRe E, Crosignani B, Tamburrini M, Segev M, Mitchell M, Refaeli E, Agranat AJ (1998b). One-dimensional steady-state photorefractive spatial solitons in centrosymmetric paraelectric potassium lithium tantalate niobate. Opt Lett 23(6):421–423ADSCrossRefGoogle Scholar
- 68.Fressengeas N, Wolfersberger D, Maufoy J, Kugel G (1998) Build up mechanisms of (1+ 1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons. Opt Commun 145(1):393–400ADSCrossRefGoogle Scholar
- 69.Zozulya AA, Anderson DZ (1995) Nonstationary self-focusing in photorefractive media. Opt Lett 20(8):837–839ADSCrossRefGoogle Scholar
- 70.Dari-Salisburgo C, DelRe E, Palange E (2003) Molding and stretched evolution of optical solitons in cumulative nonlinearities. Phys Rev Lett 91(26):263903ADSCrossRefGoogle Scholar
- 71.DelRe E, Palange E (2006) Optical nonlinearity and existence conditions for quasi-steady-state photorefractive solitons. JOSA B 23(11):2323–2327ADSCrossRefGoogle Scholar
- 72.Christodoulides DN, Coskun TH, Mitchell M, Segev M (1997) Theory of incoherent self-focusing in biased photorefractive media. Phys Rev Lett 78(4):646ADSCrossRefGoogle Scholar
- 73.Mitchell M, Segev M, Coskun TH, Christodoulides DN (1997) Theory of self-trapped spatially incoherent light beams. Phys Rev Lett 79(25):4990ADSCrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019