Skip to main content

Introducing Contextual Reasoning to the Semantic Web with OWL\(^{C}\)

  • Conference paper
  • First Online:
Graph-Based Representation and Reasoning (ICCS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11530))

Included in the following conference series:

Abstract

Representing the context of triples and reasoning on contextualized triples is an open problem in the semantic web. In this paper, we present \(OWL^{C}\): a contextual two-dimensional web ontology language. Using the first dimension, we can define contexts-dependent classes, properties, and axioms and using the second dimension, we can express knowledge about contexts which we consider formal objects, as proposed by McCarthy [17]. Moreover, we describe a contextual extension of the OWL entailment rules, and we present a new set of rules for reasoning on contexts. We demonstrate the modeling strength and reasoning capabilities of \(OWL^{C}\) with a practical scenario from the digital humanity domain. We chose the FDS project in virtue of its inherent contextual nature, as well as its notable complexity which allow us to highlight many issues connected with contextual knowledge representation and reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.w3.org/RDF/.

  2. 2.

    https://www.w3.org/OWL/.

  3. 3.

    http://www.snf.ch/fr/Pages/default.aspx.

  4. 4.

    Which have been (and still) transcribed.

  5. 5.

    In this case the individual context names \(N_{KI}\) is the cartesion product \(N_{KIt} \times N_{KIp}\) of a set of temporal contexts and a set of provenance contexts.

  6. 6.

    https://www.w3.org/TR/owl2-profiles/#Feature_Overview_3.

  7. 7.

    https://gate.ac.uk/projects.html.

  8. 8.

    https://www.wikidata.org/wiki/Wikidata.

  9. 9.

    A fluent is a relation whose object is subject to change over time (e.g Saussure lives in Geneva in 1860 but in Paris in 1882).

  10. 10.

    https://www.w3.org/TR/owl2-mapping-to-rdf/.

  11. 11.

    We actually used owlc as a prefix instead of owl\(^{c}\).

  12. 12.

    https://www.w3.org/Submission/SWRL/.

  13. 13.

    http://spinrdf.org.

  14. 14.

    https://www.topquadrant.com/tools/ide-topbraid-composer-maestro-edition/.

References

  1. Aljalbout, S., Falquet, G.: Un modele pour la representation des connaissances temporelles dans les documents historiques. arXiv preprint arXiv:1707.08000 (2017)

  2. Aljalbout, S., Falquet, G.: A semantic model for historical manuscripts. arXiv preprint arXiv:1802.00295 (2018)

  3. Aljalbout, S., Falquet, G., Buchs, D.: A practical implementation of contextual reasoning on the semantic web. In: Proceedings of the 10th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 2: KEOD, pp. 255–262. INSTICC, SciTePress (2018)

    Google Scholar 

  4. Benslimane, D., Arara, A., Falquet, G., Maamar, Z., Thiran, P., Gargouri, F.: Contextual ontologies. In: Advances in Information Systems, pp. 168–176 (2006)

    Chapter  Google Scholar 

  5. Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Sci. Ame. 284(5), 28–37 (2001)

    Article  Google Scholar 

  6. Borgida, A., Serafini, L.: Distributed description logics: assimilating information from peer sources. J. Data Semant. 1, 153–184 (2003)

    Article  Google Scholar 

  7. Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.: C-OWL: contextualizing ontologies. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 164–179. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39718-2_11

    Chapter  Google Scholar 

  8. Dividino, R., Sizov, S., Staab, S., Schueler, B.: Querying for provenance, trust, uncertainty and other meta knowledge in RDF. Web Semant. Sci. Serv. Agents World Wide Web 7(3), 204–219 (2009)

    Article  Google Scholar 

  9. Gangemi, A., Mika, P.: Understanding the semantic web through descriptions and situations. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) OTM 2003. LNCS, vol. 2888, pp. 689–706. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39964-3_44

    Chapter  Google Scholar 

  10. Ghidini, C., Giunchiglia, F.: Local models semantics, or contextual reasoning = locality + compatibility. Artif. Intell. 127(2), 221–259 (2001)

    Article  MathSciNet  Google Scholar 

  11. Giménez-García, J.M., Zimmermann, A., Maret, P.: NdFluents: an ontology for annotated statements with inference preservation. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 638–654. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58068-5_39

    Chapter  Google Scholar 

  12. Hartig, O., Thompson, B.: Foundations of an alternative approach to reification in RDF. arXiv preprint arXiv:1406.3399 (2014)

  13. Joseph, M., Serafini, L.: Simple reasoning for contextualized RDF knowledge. In: WoMO, pp. 79–93 (2011)

    Google Scholar 

  14. Klarman, S., Gutiérrez-Basulto, V.: Two-dimensional description logics for context-based semantic interoperability. In: AAAI (2011)

    Google Scholar 

  15. Kutz, O., Lutz, C., Wolter, F., Zakharyaschev, M.: E-connections of abstract description systems. Artif. intell. 156(1), 1–73 (2004)

    Article  MathSciNet  Google Scholar 

  16. LaPorte, J.: Rigid designators (2006)

    Google Scholar 

  17. McCarthy, J.: Generality in artificial intelligence. Commun. ACM 30(12), 1030–1035 (1987)

    Article  MathSciNet  Google Scholar 

  18. Nguyen, V., Bodenreider, O., Sheth, A.: Don’t like RDF reification?: making statements about statements using singleton property. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 759–770. ACM (2014)

    Google Scholar 

  19. Welty, C.: Context slices: representing contexts in OWL. In: Proceedings of the 2nd International Conference on Ontology Patterns, vol. 671, pp. 59–60. CEUR-WS.org (2010)

    Google Scholar 

  20. Welty, C., Fikes, R., Makarios, S.: A reusable ontology for fluents in OWL. FOIS 150, 226–236 (2006)

    Google Scholar 

Download references

Acknowledgement

We would like to thanks our Saussurians colleagues in particular Dr. Guiseppe Cosenza for his collaboration on FDS knowledge acquisition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar Aljalbout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aljalbout, S., Buchs, D., Falquet, G. (2019). Introducing Contextual Reasoning to the Semantic Web with OWL\(^{C}\). In: Endres, D., Alam, M., Şotropa, D. (eds) Graph-Based Representation and Reasoning. ICCS 2019. Lecture Notes in Computer Science(), vol 11530. Springer, Cham. https://doi.org/10.1007/978-3-030-23182-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23182-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23181-1

  • Online ISBN: 978-3-030-23182-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics