Skip to main content

Breaking Bad: Uncoupling of Modularity in Centriole Biogenesis and the Generation of Excess Centrioles in Cancer

  • Chapter
  • First Online:
The Golgi Apparatus and Centriole

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 67))

Abstract

Centrosomes are tiny yet complex cytoplasmic structures that perform a variety of roles related to their ability to act as microtubule-organizing centers. Like the genome, centrosomes are single copy structures that undergo a precise semi-conservative replication once each cell cycle. Precise replication of the centrosome is essential for genome integrity, because the duplicated centrosomes will serve as the poles of a bipolar mitotic spindle, and any number of centrosomes other than two will lead to an aberrant spindle that mis-segregates chromosomes. Indeed, excess centrosomes are observed in a variety of human tumors where they generate abnormal spindles in situ that are thought to participate in tumorigenesis by driving genomic instability. At the heart of the centrosome is a pair of centrioles, and at the heart of centrosome duplication is the replication of this centriole pair. Centriole replication proceeds through a complex macromolecular assembly process. However, while centrosomes may contain as many as 500 proteins, only a handful of proteins have been shown to be essential for centriole replication. Our observations suggest that centriole replication is a modular, bottom-up process that we envision akin to building a house; the proper site of assembly is identified, a foundation is assembled at that site, and subsequent modules are added on top of the foundation. Here, we discuss the data underlying our view of modularity in the centriole assembly process, and suggest that non-essential centriole assembly factors take on greater importance in cancer cells due to their function in coordination between centriole modules, using the Monopolar spindles 1 protein kinase and its substrate Centrin 2 to illustrate our model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M (2003) Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426(6966):570–574

    Article  CAS  PubMed  Google Scholar 

  • Avidor-Reiss T, Fishman EL (2019) It takes two (centrioles) to tango. Reproduction 157:R33–R51. https://doi.org/10.1530/REP-18-0350

    Article  CAS  PubMed  Google Scholar 

  • Band V, Sager R (1991). Tumor progression in breast cancer) In: Rhim JS, Dritschilo A (eds) Neoplastic transformation in human cell systems in vitro. Humana Press, New Jersey, pp 169–178

    Chapter  Google Scholar 

  • Band V, Zajchowski D, Swisshelm K, Trask D, Kulesa V, Cohen C, Connolly J, Sager R (1990) Tumor progression in four mammary epithelial cell lines derived from the same patient. Cancer Res 50(22):7351–7357

    CAS  PubMed  Google Scholar 

  • Banterle N, Gonczy P (2017) Centriole biogenesis: from identifying the characters to understanding the plot. Annu Rev Cell Dev Biol 33:23–49. https://doi.org/10.1146/annurev-cellbio-100616-060454

    Article  CAS  PubMed  Google Scholar 

  • Baron AT, Greenwood TM, Bazinet CW, Salisbury JL (1992) Centrin is a component of the pericentriolar lattice. Biol Cell 76(3):383–388

    Article  CAS  PubMed  Google Scholar 

  • Baum P, Furlong C, Byers B (1986) Yeast gene required for spindle pole body duplication: homology of its product with Ca2+-binding proteins. Proc Natl Acad Sci 83:5512–5516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt KV, Spofford LS, Aram G, McMullen M, Pumiglia K, Aplin AE (2005) Adhesion control of cyclin D1 and p27Kip1 levels is deregulated in melanoma cells through BRAF-MEK-ERK signaling. Oncogene 24(21):3459–3471. https://doi.org/10.1038/sj.onc.1208544

    Article  CAS  PubMed  Google Scholar 

  • Bhatt KV, Hu R, Spofford LS, Aplin AE (2007) Mutant B-RAF signaling and cyclin D1 regulate Cks1/S-phase kinase-associated protein 2-mediated degradation of p27Kip1 in human melanoma cells. Oncogene 26(7):1056–1066. https://doi.org/10.1038/sj.onc.1209861

    Article  CAS  PubMed  Google Scholar 

  • Bornens M (2002) Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol 14(1):25–34

    Article  CAS  PubMed  Google Scholar 

  • Boutros R, Mondesert O, Lorenzo C, Astuti P, McArthur G, Chircop M, Ducommun B, Gabrielli B (2013) CDC25B overexpression stabilises centrin 2 and promotes the formation of excess centriolar foci. PLoS One 8(7):e67822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breslow DK, Holland AJ (2019) Mechanism and regulation of centriole and cilium biogenesis. Annu Rev Biochem 88:691–724. https://doi.org/10.1146/annurev-biochem-013118-111153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho-Santos Z, Machado P, Branco P, Tavares-Cadete F, Rodrigues-Martins A, Pereira-Leal JB, Bettencourt-Dias M (2010) Stepwise evolution of the centriole-assembly pathway. J Cell Sci 123(Pt 9):1414–1426

    Article  CAS  PubMed  Google Scholar 

  • Coletta RD, Christensen K, Reichenberger KJ, Lamb J, Micomonaco D, Huang L, Wolf DM, Muller-Tidow C, Golub TR, Kawakamia K, Ford HL (2004) The Six1 homeoprotein stimulates tumorigenesis by reactivation of cyclin A1. Proc Natl Acad Sci USA 101(17):6478–6483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Alise AM, Amabile G, Iovino M, Di Giorgio FP, Bartiromo M, Sessa F, Villa F, Musacchio A, Cortese R (2008) Reversine, a novel Aurora kinases inhibitor, inhibits colony formation of human acute myeloid leukemia cells. Mol Cancer Ther 7(5):1140–1149. https://doi.org/10.1158/1535-7163.MCT-07-2051

    Article  CAS  PubMed  Google Scholar 

  • Dantas TJ, Wang Y, Lalor P, Dockery P, Morrison CG (2012) Defective nucleotide excision repair with normal centrosome structures and functions in the absence of all vertebrate centrins. J Cell Biol 193(2):307–318

    Article  Google Scholar 

  • Dantas TJ, Daly OM, Conroy PC, Tomas M, Wang Y, Lalor P, Dockery P, Ferrando-May E, Morrison CG (2013) Calcium-binding capacity of centrin2 is required for linear POC5 assembly but not for nucleotide excision repair. PLoS One 8(7):e68487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954. https://doi.org/10.1038/nature00766

    Article  CAS  PubMed  Google Scholar 

  • Dawe HR, Farr H, Gull K (2007) Centriole/basal body morphogenesis and migration during ciliogenesis in animal cells. J Cell Sci 120(Pt 1):7–15

    CAS  PubMed  Google Scholar 

  • Delattre M, Canard C, Gonczy P (2006) Sequential protein recruitment in C. elegans centriole formation. Curr Biol 16(18):1844–1849

    Article  CAS  PubMed  Google Scholar 

  • Ellsworth DL, Ellsworth RE, Liebman MN, Hooke JA, Shriver CD (2004a) Genomic instability in histologically normal breast tissues: implications for carcinogenesis. Lancet Oncol 5(12):753–758

    Article  CAS  PubMed  Google Scholar 

  • Ellsworth DL, Ellsworth RE, Love B, Deyarmin B, Lubert SM, Mittal V, Shriver CD (2004b) Genomic patterns of allelic imbalance in disease free tissue adjacent to primary breast carcinomas. Breast Cancer Res Treat 88(2):131–139

    Article  CAS  PubMed  Google Scholar 

  • Errabolu R, Sanders MA, Salisbury JL (1994) Cloning of a cDNA encoding human centrin, an EF-hand protein of centrosomes and mitotic spindle poles. J Cell Sci 107(Pt 1):9–16

    CAS  PubMed  Google Scholar 

  • Firat-Karalar EN, Rauniyar N, Yates JR, Stearns T (2014) Proximity interactions among centrosome components identify regulators of centriole duplication. Curr Biol 24(6):664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisk HA, Winey M (2001) The mouse mps1p-like kinase regulates centrosome duplication. Cell 106(1):95–104

    Article  CAS  PubMed  Google Scholar 

  • Fisk HA, Mattison CP, Winey M (2002) Centrosomes and tumour suppressors. Curr Opin Cell Biol 14(6):700–705

    Article  CAS  PubMed  Google Scholar 

  • Fisk HA, Mattison CP, Winey M (2003) Human Mps1 protein kinase is required for centrosome duplication and normal mitotic progression. Proc Natl Acad Sci USA 100(25):14875–14880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fong CS, Kim M, Yang TT, Liao JC, Tsou MF (2014) SAS-6 assembly templated by the lumen of cartwheel-less centrioles precedes centriole duplication. Dev Cell 30(2):238–245. https://doi.org/10.1016/j.devcel.2014.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman AK, Ritt DA, Morrison DK (2013) Effects of Raf dimerization and its inhibition on normal and disease-associated Raf signaling. Mol Cell 49(4):751–758. https://doi.org/10.1016/j.molcel.2012.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganem NJ, Godinho SA, Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460(7252):278–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavet O, Alvarez C, Gaspar P, Bornens M (2003) Centrin4p, a novel mammalian centrin specifically expressed in ciliated cells. Mol Biol Cell 14(5):1818–1834. https://doi.org/10.1091/mbc.e02-11-0709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godinho SA, Pellman D (2014) Causes and consequences of centrosome abnormalities in cancer. Philos Trans R Soc Lond Ser B Biol Sci 369(1650):20130467. https://doi.org/10.1098/rstb.2013.0467

    Article  CAS  Google Scholar 

  • Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T, Abdel-Malek ZA, Marais R, Wynford-Thomas D, Bennett DC (2006) Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br J Cancer 95(4):496–505. https://doi.org/10.1038/sj.bjc.6603283

    Article  CAS  PubMed  Google Scholar 

  • Hardwick K, Weiss E, Luca FC, Winey M, Murray A (1996) Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science 273:953–956

    Article  CAS  PubMed  Google Scholar 

  • Hart PE, Glantz JN, Orth JD, Poynter GM, Salisbury JL (1999) Testis-specific murine centrin, Cetn1: genomic characterization and evidence for retroposition of a gene encoding a centrosome protein. Genomics 60(2):111–120. https://doi.org/10.1006/geno.1999.5880

    Article  CAS  PubMed  Google Scholar 

  • Hewitt L, Tighe A, Santaguida S, White AM, Jones CD, Musacchio A, Green S, Taylor SS (2010) Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1-C-Mad2 core complex. J Cell Biol 190(1):25–34. https://doi.org/10.1083/jcb.201002133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinchcliffe EH, Sluder G (2001) “It Takes Two to Tango”: understanding how centrosome duplication is regulated throughout the cell cycle. Genes Dev 15(10):1167–1181

    Article  CAS  PubMed  Google Scholar 

  • Hinchcliffe EH, Miller FJ, Cham M, Khodjakov A, Sluder G (2001) Requirement of a centrosomal activity for cell cycle progression through G1 into S phase. Science 291(5508):1547–1550

    Article  CAS  PubMed  Google Scholar 

  • Hirono M (2014) Cartwheel assembly. Philos Trans R Soc Lond Ser B Biol Sci 369(1650):20130458. https://doi.org/10.1098/rstb.2013.0458

    Article  CAS  Google Scholar 

  • Hodges ME, Scheumann N, Wickstead B, Langdale JA, Gull K (2010) Reconstructing the evolutionary history of the centriole from protein components. J Cell Sci 123(Pt 9):1407–1413. https://doi.org/10.1242/jcs.064873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland AJ, Lan W, Niessen S, Hoover H, Cleveland DW (2010) Polo-like kinase 4 kinase activity limits centrosome overduplication by autoregulating its own stability. J Cell Biol 188(2):191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoyer-Fender S (2010) Centriole maturation and transformation to basal body. Semin Cell Dev Biol 21(2):142–147

    Article  PubMed  Google Scholar 

  • Jakobsen L, Vanselow K, Skogs M, Toyoda Y, Lundberg E, Poser I, Falkenby LG, Bennetzen M, Westendorf J, Nigg EA, Uhlen M, Hyman AA, Andersen JS (2011) Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods. EMBO J 30(8):1520–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jalili A, Wagner C, Pashenkov M, Pathria G, Mertz KD, Widlund HR, Lupien M, Brunet JP, Golub TR, Stingl G, Fisher DE, Ramaswamy S, Wagner SN (2012) Dual suppression of the cyclin-dependent kinase inhibitors CDKN2C and CDKN1A in human melanoma. J Natl Cancer Inst 104(21):1673–1679. https://doi.org/10.1093/jnci/djs373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jerka-Dziadosz M, Koll F, Wloga D, Gogendeau D, Garreau de Loubresse N, Ruiz F, Fabczak S, Beisson J (2013) A Centrin3-dependent, transient, appendage of the mother basal body guides the positioning of the daughter basal body in Paramecium. Protist 164(3):352–368. https://doi.org/10.1016/j.protis.2012.11.003

    Article  CAS  PubMed  Google Scholar 

  • Kanai M, Ma Z, Izumi H, Kim SH, Mattison CP, Winey M, Fukasawa K (2007) Physical and functional interaction between mortalin and Mps1 kinase. Genes Cells 12(6):797–810

    CAS  PubMed  Google Scholar 

  • Kasbek C, Yang CH, Yusof AM, Chapman HM, Winey M, Fisk HA (2007) Preventing the degradation of mps1 at centrosomes is sufficient to cause centrosome reduplication in human cells. Mol Biol Cell 18(11):4457–4469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasbek C, Yang C-H, Fisk HA (2009) Mps1 as a link between centrosomes and genetic instability. Environ Mol Mutagen 50(8):654–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasbek C, Yang CH, Fisk HA (2010) Antizyme restrains centrosome amplification by regulating the accumulation of Mps1 at centrosomes. Mol Biol Cell 21(22):3879–3889

    Article  Google Scholar 

  • Kawamura K, Izumi H, Ma Z, Ikeda R, Moriyama M, Tanaka T, Nojima T, Levin LS, Fujikawa-Yamamoto K, Suzuki K, Fukasawa K (2004) Induction of centrosome amplification and chromosome instability in human bladder cancer cells by p53 mutation and cyclin E overexpression. Cancer Res 64(14):4800–4809

    Article  CAS  PubMed  Google Scholar 

  • Khodjakov A, Rieder CL (2001) Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression. J Cell Biol 153(1):237–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim T-S, Park J-E, Shukla A, Choi S, Murugan RN, Lee JH, Ahn M, Rhee K, Bang JK, Kim BY, Loncarek J, Erikson RL, Lee KS (2013) Hierarchical recruitment of Plk4 and regulation of centriole biogenesis by two centrosomal scaffolds, Cep192 and Cep152. Proc Natl Acad Sci USA 110(50):E4849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein UR, Nigg EA (2009) SUMO-dependent regulation of centrin-2. J Cell Sci 122(Pt 18):3312–3321

    Article  CAS  PubMed  Google Scholar 

  • Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD, Nigg EA (2007) Plk4-induced centriole biogenesis in human cells. Dev Cell 13(2):190–202

    Article  CAS  PubMed  Google Scholar 

  • Kortylewski M, Heinrich PC, Kauffmann ME, Bohm M, MacKiewicz A, Behrmann I (2001) Mitogen-activated protein kinases control p27/Kip1 expression and growth of human melanoma cells. Biochem J 357(Pt 1):297–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwiatkowski N, Jelluma N, Filippakopoulos P, Soundararajan M, Manak MS, Kwon M, Choi HG, Sim T, Deveraux QL, Rottmann S, Pellman D, Shah JV, Kops GJPL, Knapp S, Gray NS (2010) Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function. Nat Chem Biol 6(5):359–368. https://doi.org/10.1038/Nchembio.345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leidel S, Gonczy P (2005) Centrosome duplication and nematodes: recent insights from an old relationship. Dev Cell 9(3):317–325

    Article  CAS  PubMed  Google Scholar 

  • Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–649

    Article  CAS  PubMed  Google Scholar 

  • Lin YC, Chang CW, Hsu WB, Tang CJ, Lin YN, Chou EJ, Wu CT, Tang TK (2013) Human microcephaly protein CEP135 binds to hSAS-6 and CPAP, and is required for centriole assembly. EMBO J 32(8):1141–1154. https://doi.org/10.1038/emboj.2013.56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lingle WL, Salisbury JL (1999) Altered centrosome structure is associated with abnormal mitoses in human breast tumors. Am J Pathol 155(6):1941–1951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lingle WL, Lutz WH, Ingle JN, Maihle NJ, Salisbury JL (1998) Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc Natl Acad Sci USA 95(6):2950–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lingle WL, Barrett SL, Negron VC, D’Assoro AB, Boeneman K, Liu W, Whitehead CM, Reynolds C, Salisbury JL (2002) Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci USA 99(4):1978–1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Cheng X, Zhang Y, Li S, Cui H, Zhang L, Shi R, Zhao Z, He C, Wang C, Zhao H, Zhang C, Fisk HA, Guadagno TM, Cui Y (2013) Phosphorylation of Mps1 by BRAFV600E prevents Mps1 degradation and contributes to chromosome instability in melanoma. Oncogene 32(6):713–723. https://doi.org/10.1038/onc.2012.94

    Article  CAS  PubMed  Google Scholar 

  • Maciejowski J, George KA, Terret ME, Zhang C, Shokat KM, Jallepalli PV (2010) Mps1 directs the assembly of Cdc20 inhibitory complexes during interphase and mitosis to control M phase timing and spindle checkpoint signaling. J Cell Biol 190(1):89–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maelandsmo GM, Holm R, Fodstad O, Kerbel RS, Florenes VA (1996) Cyclin kinase inhibitor p21WAF1/CIP1 in malignant melanoma: reduced expression in metastatic lesions. Am J Pathol 149(6):1813–1822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Majumder S, Slabodnick M, Pike A, Marquardt J, Fisk HA (2012) VDAC3 regulates centriole assembly by targeting Mps1 to centrosomes. Cell Cycle 11(19):3666–3678. https://doi.org/10.4161/cc.21927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantel C, Braun SE, Reid S, Henegariu O, Liu L, Hangoc G, Broxmeyer HE (1999) p21(cip-1/waf-1) deficiency causes deformed nuclear architecture, centriole overduplication, polyploidy, and relaxed microtubule damage checkpoints in human hematopoietic cells. Blood 93(4):1390–1398

    CAS  PubMed  Google Scholar 

  • Marquardt JR, Perkins JL, Beuoy KJ, Fisk HA (2016) Modular elements of the TPR domain in the Mps1 N terminus differentially target Mps1 to the centrosome and kinetochore. Proc Natl Acad Sci USA 113(28):7828–7833. https://doi.org/10.1073/pnas.1607421113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Middendorp S, Paoletti A, Schiebel E, Bornens M (1997) Identification of a new mammalian centrin gene, more closely related to Saccharomyces cerevisiae CDC31 gene. Proc Natl Acad Sci USA 94(17):9141–9146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Middendorp S, Kuntziger T, Abraham Y, Holmes S, Bordes N, Paintrand M, Paoletti A, Bornens M (2000) A role for Centrin 3 in centrosome reproduction. J Cell Biol 148(3):405–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moyer TC, Clutario KM, Lambrus BG, Daggubati V, Holland AJ (2015) Binding of STIL to Plk4 activates kinase activity to promote centriole assembly. J Cell Biol 209(6):863–878. https://doi.org/10.1083/jcb.201502088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta M, Ashikawa T, Nozaki Y, Kozuka-Hata H, Goto H, Inagaki M, Oyama M, Kitagawa D (2014) Direct interaction of Plk4 with STIL ensures formation of a single procentriole per parental centriole. Nat Commun 5:5267. https://doi.org/10.1038/ncomms6267

    Article  CAS  PubMed  Google Scholar 

  • Paoletti A, Moudjou M, Paintrand M, Salisbury JL, Bornens M (1996) Most of centrin in animal cells is not centrosome-associated and centrosomal centrin is confined to the distal lumen of centrioles. J Cell Sci 109(Pt 13):3089–3102

    CAS  PubMed  Google Scholar 

  • Peel N, Stevens NR, Basto R, Raff JW (2007) Overexpressing centriole-replication proteins in vivo induces centriole overduplication and de novo formation. Curr Biol 17(10):834–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelletier L, O’Toole E, Schwager A, Hyman AA, Muller-Reichert T (2006) Centriole assembly in Caenorhabditis elegans. Nature 444(7119):619–623

    Article  CAS  PubMed  Google Scholar 

  • Pereira G, Schiebel E (2001) The role of the yeast spindle pole body and the mammalian centrosome in regulating late mitotic events. Curr Opin Cell Biol 13(6):762–769

    Article  CAS  PubMed  Google Scholar 

  • Piel M, Nordberg J, Euteneuer U, Bornens M (2001) Centrosome-dependent exit of cytokinesis in animal cells. Science 291(5508):1550–1553

    Article  CAS  PubMed  Google Scholar 

  • Pike AN, Fisk HA (2011) Centriole assembly and the role of Mps1: defensible or dispensable? Cell Div 6:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pugacheva EN, Jablonski SA, Hartman TR, Henske EP, Golemis EA (2007) HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 129(7):1351–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieder CL, Faruki S, Khodjakov A (2001) The centrosome in vertebrates: more than a microtubule-organizing center. Trends Cell Biol 11(10):413–419

    Article  CAS  PubMed  Google Scholar 

  • Saavedra HI, Maiti B, Timmers C, Altura R, Tokuyama Y, Fukasawa K, Leone G (2003) Inactivation of E2F3 results in centrosome amplification. Cancer Cell 3(4):333–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salisbury J, Suino K, Busby R, Springett M (2002) Centrin-2 is required for centriole duplication in Mammalian cells. Curr Biol 12(15):1287

    Article  CAS  PubMed  Google Scholar 

  • Santaguida S, Tighe A, D’Alise AM, Taylor SS, Musacchio A (2010) Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine. J Cell Biol 190(1):73–87. https://doi.org/10.1083/jcb.201001036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawant DB, Majumder S, Perkins JL, Yang CH, Eyers PA, Fisk HA (2015) Centrin 3 is an inhibitor of centrosomal Mps1 and antagonizes centrin 2 function. Mol Biol Cell 26(21):3741–3753. https://doi.org/10.1091/mbc.E14-07-1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schatten H, Sun QY (2018) Functions and dysfunctions of the mammalian centrosome in health, disorders, disease, and aging. Histochem Cell Biol 150(4):303–325. https://doi.org/10.1007/s00418-018-1698-1

    Article  CAS  PubMed  Google Scholar 

  • Schutz AR, Winey M (1998) New alleles of the yeast MPS1 gene reveal multiple requirements in spindle pole body duplication. Mol Biol Cell 9(4):759–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shreeram S, Hee WK, Bulavin DV (2008) Cdc25A serine 123 phosphorylation couples centrosome duplication with DNA replication and regulates tumorigenesis. Mol Cell Biol 28(24):7442–7450. https://doi.org/10.1128/MCB.00138-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sillibourne JE, Tack F, Vloemans N, Boeckx A, Thambirajah S, Bonnet P, Ramaekers FC, Bornens M, Grand-Perret T (2010) Autophosphorylation of polo-like kinase 4 and its role in centriole duplication. Mol Biol Cell 21(4):547–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivas V, Kitagawa M, Wong J, Liao PJ, Lee SH (2015) The tumor suppressor Cdkn3 is required for maintaining the proper number of centrosomes by regulating the centrosomal stability of Mps1. Cell Rep 13(8):1569–1577. https://doi.org/10.1016/j.celrep.2015.10.039

    Article  CAS  PubMed  Google Scholar 

  • Stucke VM, Sillje HH, Arnaud L, Nigg EA (2002) Human Mps1 kinase is required for the spindle assembly checkpoint but not for centrosome duplication. EMBO J 21(7):1723–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto Y, Sawant DB, Fisk HA, Mao L, Li C, Chettiar S, Li PK, Darby MV, Brueggemeier RW (2017) Novel pyrrolopyrimidines as Mps1/TTK kinase inhibitors for breast cancer. Bioorg Med Chem 25(7):2156–2166. https://doi.org/10.1016/j.bmc.2017.02.030

    Article  CAS  PubMed  Google Scholar 

  • Tang CJ, Fu RH, Wu KS, Hsu WB, Tang TK (2009) CPAP is a cell-cycle regulated protein that controls centriole length. Nat Cell Biol 11(7):825–831

    Article  CAS  PubMed  Google Scholar 

  • Tannous BA, Kerami M, Van der Stoop PM, Kwiatkowski N, Wang J, Zhou W, Kessler AF, Lewandrowski G, Hiddingh L, Sol N, Lagerweij T, Wedekind L, Niers JM, Barazas M, Nilsson RJ, Geerts D, De Witt Hamer PC, Hagemann C, Vandertop WP, Van Tellingen O, Noske DP, Gray NS, Wurdinger T (2013) Effects of the selective MPS1 inhibitor MPS1-IN-3 on glioblastoma sensitivity to antimitotic drugs. J Natl Cancer Inst 105(17):1322–1331. https://doi.org/10.1093/jnci/djt168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarapore P, Tokuyama Y, Horn HF, Fukasawa K (2001) Difference in the centrosome duplication regulatory activity among p53 ‘hot spot’ mutants: potential role of Ser 315 phosphorylation-dependent centrosome binding of p53. Oncogene 20(47):6851–6863

    Article  CAS  PubMed  Google Scholar 

  • Tarapore P, Shinmura K, Suzuki H, Tokuyama Y, Kim SH, Mayeda A, Fukasawa K (2006) Thr199 phosphorylation targets nucleophosmin to nuclear speckles and represses pre-mRNA processing. FEBS Lett 580(2):399–409

    Article  CAS  PubMed  Google Scholar 

  • Tardif KD, Rogers A, Cassiano J, Roth BL, Cimbora DM, McKinnon R, Peterson A, Douce TB, Robinson R, Dorweiler I, Davis T, Hess MA, Ostanin K, Papac DI, Baichwal V, McAlexander I, Willardsen JA, Saunders M, Christophe H, Kumar DV, Wettstein DA, Carlson RO, Williams BL (2011) Characterization of the cellular and antitumor effects of MPI-0479605, a small-molecule inhibitor of the mitotic kinase Mps1. Mol Cancer Ther 10(12):2267–2275. https://doi.org/10.1158/1535-7163.Mct-11-0453

    Article  CAS  PubMed  Google Scholar 

  • Thompson JR, Ryan ZC, Salisbury JL, Kumar R (2006) The structure of the human centrin 2-xeroderma pigmentosum group C protein complex. J Biol Chem 281(27):18746–18752

    Article  CAS  PubMed  Google Scholar 

  • Tsikitis VL, Chung MA (2006) Biology of ductal carcinoma in situ classification based on biologic potential. Am J Clin Oncol 29(3):305–310

    Article  PubMed  Google Scholar 

  • Vonderfecht T, Cookson MW, Giddings TH Jr, Clarissa C, Winey M (2012) The two human centrin homologues have similar but distinct functions at Tetrahymena basal bodies. Mol Biol Cell 23(24):4766–4777. https://doi.org/10.1091/mbc.E12-06-0454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss E, Winey M (1996) The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint. J Cell Biol 132(1 & 2):111–123

    Article  CAS  PubMed  Google Scholar 

  • Wengner AM, Siemeister G, Koppitz M, Schulze V, Kosemund D, Klar U, Stoeckigt D, Neuhaus R, Lienau P, Bader B, Prechtl S, Raschke M, Frisk AL, von Ahsen O, Michels M, Kreft B, von Nussbaum F, Brands M, Mumberg D, Ziegelbauer K (2016) Novel Mps1 kinase inhibitors with potent anti-tumor activity. Mol Cancer Ther 15(4):583–592. https://doi.org/10.1158/1535-7163.MCT-15-0500

    Article  CAS  PubMed  Google Scholar 

  • Winey M, Goetsch L, Baum P, Byers B (1991) MPS1 and MPS2: novel yeast genes defining distinct steps of spindle pole body duplication. J Cell Biol 114(4):745–754

    Article  CAS  PubMed  Google Scholar 

  • Wolfrum U, Salisbury JL (1998) Expression of centrin isoforms in the mammalian retina. Exp Cell Res 242(1):10–17. https://doi.org/10.1006/excr.1998.4038

    Article  CAS  PubMed  Google Scholar 

  • Yang CH, Kasbek C, Majumder S, Mohd Yusof A, Fisk HA (2010) Mps1 phosphorylation sites regulate the function of Centrin 2 in centriole assembly. Mol Biol Cell 21(24):4361–4372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Chen X, Gurian-West M, Roberts JM (2012) Loss of cyclin-dependent kinase 2 (CDK2) inhibitory phosphorylation in a CDK2AF knock-in mouse causes misregulation of DNA replication and centrosome duplication. Mol Cell Biol 32(8):1421–1432. https://doi.org/10.1128/MCB.06721-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold A. Fisk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fisk, H.A., Thomas, J.L., Nguyen, T.B. (2019). Breaking Bad: Uncoupling of Modularity in Centriole Biogenesis and the Generation of Excess Centrioles in Cancer. In: Kloc, M. (eds) The Golgi Apparatus and Centriole. Results and Problems in Cell Differentiation, vol 67. Springer, Cham. https://doi.org/10.1007/978-3-030-23173-6_17

Download citation

Publish with us

Policies and ethics