Skip to main content

Alternative Fertilizers and Sustainable Agriculture

  • Chapter
  • First Online:

Abstract

Sustainable food production requires application of fertilizers including macro and micronutrients in arable land. The fertilizers application in agricultural practices has significantly increased the production of food, fiber and other plant products. However, a significant portion of nitrogen (40–60%), phosphorus (80–90%) and potash (30–50%) applied fertilizers in the agricultural field is not taken up by plants due to different soil dynamics. Such losses increase the cost of fertilizers that severely reduce crop yield. Yet future access to mineral fertilizers receives major attention of plant scientists to overcome the applied fertilizer losses for food security. To overcome these problems, different alternative fertilizers are developed to efficient utilization of nutrients including microbial inoculants, value-added compost and biochar, acidulated-microbial active products, formula-modified fertilizers, liquid macro and micro- nutrient fertilizers with different mode of application to partial or complete substitution of reputed chemical fertilizers. This chapter puts forward the case of different alternative fertilizers and their potential for sustainable crop production.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbas A, Yaseen M, Khalid M, Naveed M, Aziz MZ, Hamid Y, Saleem M (2017) Effect of biochar-amended urea on nitrogen economy of soil for improving the growth and yield of wheat (Triticum Aestivum L.) under field condition. J Plant Nutr 40(16):2303–2311

    Article  CAS  Google Scholar 

  • Abbas SQ, Hassan MU, Hussain B, Rasool T, Ali Q (2014) Optimization of zinc seed priming treatments for improving the germination and early seedling growth of Oryza sativa. Adv Life Sci 2:31–37

    Google Scholar 

  • Addiscott TM, Dexter AR (1994) Tillage and crop residue management effects on losses of chemicals from soils. Soil Till Res 30:125–168

    Article  Google Scholar 

  • Ahmad R, Khalid A, Arshad M, Zahir ZA, Naveed M (2006) Effect of raw (un-composted) and composted organic waste material on growth and yield of maize (Zea mays L.). Soil Environ 25:135–142

    Google Scholar 

  • Ahmad R, Shehzad SM, Khalid A, Arshad M, Mahmood MH (2007) Growth and yield response of wheat (Triticum aestivum L.) and maize (Zea mays L.) to nitrogen and L-Tryptophan enriched compost. Pak J Bot 39:541–549

    Google Scholar 

  • Ahmad R, Arshad M, Khalidand A, Zahir ZA (2008a) Effectiveness of organic-/bio-fertilizer supplemented with chemical fertilizers for improving soil water retention, aggregate stability, growth and nutrient uptake of maize (Zea mays L.). J Sustain Agric 31:57–74

    Article  Google Scholar 

  • Ahmad R, Arshad M, Khalid A, Zahir ZA (2008b) Effect of compost enriched with N and L-tryptophan on soil and maize. Agron Sustain Dev 28:299–305

    Article  CAS  Google Scholar 

  • Akladious SA, Abbas SM (2012) Application of Trichoderma harzianum T22 as a biofertilizer supporting maize growth. Afr J Biotechnol 11:8672–8683

    CAS  Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision, ESA Working Paper No. 12-03. FAO, Rome

    Google Scholar 

  • Anderson IC, Buxton DR, Karlen DL, Cambardella C (1997) Cropping system effects on nitrogen removal, soil nitrogen, aggregate stability, and subsequent corn grain yield. Agron J 89(6):881

    Article  Google Scholar 

  • Aria MM, Lakzian A, Haghnia GH, Berenji AR, Besharati H, Fotovat A (2010) Effect of Thiobacillus, sulfur, and vermicompost on the water-soluble phosphorous of hard rock phosphate. Bioresour Technol 101:551–554

    Article  CAS  PubMed  Google Scholar 

  • Arif M, Waqas M, Nawab K, Shahid M (2007) Effect of seed priming in Zn solutions on chickpea and wheat. Afr Crop Sci Conf Proc 8:237–240

    Google Scholar 

  • Azam F (1990) Comparative effect of organic and inorganic nitrogen sources applied to a flooded soil on rice yield and availability of Nitrogen. Plant Soil 125:255–263

    Article  CAS  Google Scholar 

  • Aziz MZ, Yaseen M, Naveed M (2016a) Efficacy of carboxymethyl cellulose coated diammonium phosphate bioaugmented with Burkholderia phytofirmans to promote phosphorus use efficiency of wheat via control release of microbe. 1st National conference on Recent Trends in Microbiology, 19–21 December, Abbottabad University of Science and Technology, Pakistan

    Google Scholar 

  • Aziz MZ, Yaseen M, Naveed M, Shahid M (2016b) Improving growth and phosphorus use efficiency of wheat via controlled release of bacteria-immobilized in alginate coated on diammonium phosphate. 3rd conference of the world association of soil and water conservation, August 22–26, Belgrade, Republic of Serbia

    Google Scholar 

  • Aziz MZ, Yaseen M, Naveed M, Shahid M (2018) Alginate-entrapped Enterobacter spp. MN17 coated diammonium phosphate improves growth, yield and phosphorus use efficiency of wheat. Int J Agric Biol. https://doi.org/10.17957/IJAB/15.0770

  • Bacon PE, Welsh T, Heenan DP, McCaffery D, Batten GD, Williams A (1987) Effect of N application rate and timing on growth and yield of Pelde and M7 at Yanco. Adv Agron 51:33–76

    Google Scholar 

  • Badaruddin M, Meyer DW (1994) Grain legume effects on soil nitrogen, grain yield, and nitrogen nutrition of wheat. Crop Sci 34:1304–1309

    Article  Google Scholar 

  • Bailey A, Deasy C, Quinton J, Silgram M, Jackson B, Stevens C (2013) Determining the cost of in-field mitigation options to reduce sediment and phosphorus loss. Land Use Policy 30:234–242

    Article  Google Scholar 

  • Bajpai PD, Rao WVBS (1971) Phosphate solubilising bacteria. Soil Sci Plant Nutr 17(2):46–53

    Article  CAS  Google Scholar 

  • Ball BC, Bicker DC, Roberison EAG (1990) Straw incorporation and tillage for winter barley: soil structural effects. Soil Till Res 15:309–327

    Article  Google Scholar 

  • Basak BB, Pal S, Datta SC (2012) Use of modified clays for retention and supply of water and nutrients. Curr Sci 102:12–72

    Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  • Bashan Y, de-Bashan EL, Prabhu SR, Hernandez J (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33

    Article  CAS  Google Scholar 

  • Besharati H (1998) Effects of the sulfur applications with Thiobacillus species in the ability to absorb certain nutrients in the soil. PhD diss., M. Sc. Thesis, Faculty of Agriculture, Tehran University. (In Farsi)

    Google Scholar 

  • Bhogal A, Nicholson FA, Chambers BJ (2009) Organic carbon additions: effects on soil biophysical and physicochemical properties. Eur J Soil Sci 60:276–286

    Article  CAS  Google Scholar 

  • Bourke J, Harris MM, Fushimi C, Dowaki K, Nunoura T, Antal MJJ (2007) Do all the carbonised charcoal have same structure? A model of chemical structure of carbonized charcoal. Ind Eng Chem Res 50:169–175

    Google Scholar 

  • Brown R (2009) Biochar production technology. In: Lehmann J, Joseph S (eds) Biochar for environment management. Science and Technology. Earthscan, London, pp 127–146

    Google Scholar 

  • Ca X, Harris W (2010) Properties of dairy manure derived biochar pertinent to its potential use in remediation. Bioresour Technol 101:5222–5228

    Article  CAS  Google Scholar 

  • Callan NW, Mathre DE, Miller JB (1990) Bio-priming seed treatment for biological control of Pythium ultimum pre-emergence damping off in sh2 sweet corn. Plant Dis 74:368–372

    Article  Google Scholar 

  • Callan NW, Mathre DE, Miller JB, Vavrina CS (1997) Biological seed treatments: factors involved in efficacy. Hortic Sci 32:179–183

    Google Scholar 

  • Cannell RQ (1987) Straw incorporation in relation to soil conditions and crop growth. Outlook Agric 13:130–135

    Article  Google Scholar 

  • Chan KY, Zwieten LV, Meshzaros I, Downie A, Joseph S (2007) Agronomic value of greenwaste biochar as soil amendment. Aust J Soil Res 45:629–634

    Article  CAS  Google Scholar 

  • Chan KY, Zwieten LV, Meshzaros I, Downie A, Joseph S (2008) Using poultry litter biochar as soil amendments. Aust J Soil Res 46:437–444

    Article  Google Scholar 

  • Chien SH, Gearhart MM, Villagarcķa S (2011) Comparison of ammonium sulfate with other nitrogen and sulfur fertilizers in increasing crop production and minimizing environmental impact. Soil Sci 176(7):327–335

    Article  CAS  Google Scholar 

  • Compant PF, Sessitsch A, Mathieu F (2012) The 125th anniversary of the first postulation of the soil origin of endophytic bacteria-a tribute to M.L.V. Galippe. Plant Soil 356:299–301

    Article  CAS  Google Scholar 

  • Cui Y, Dong Y, Li H, Wang Q (2004) Effect of elemental Sulphur on solubility of soil heavy metals and their uptake by maize. Environ Int 30(3):323–328

    Article  CAS  PubMed  Google Scholar 

  • Dave AM, Mehta MH, Aminabhavi TM, Kulkarni AR, Soppimath KS (1999) A review on controlled release of nitrogen fertilizers through polymeric membrane devices. Polym-Plast Technol Eng 38(4):675–711

    Article  CAS  Google Scholar 

  • de Santiago A, García-López AM, Quintero JM, Avilés M, Delgado A (2013) Effect of Trichoderma asperellum strain T34 and glucose addition on iron nutrition in cucumber grown on calcareous soils. Soil Biol Biochem 57:598–605

    Article  CAS  Google Scholar 

  • Deluca TH, Mackenzie MD, Dundale MJ (2009) Biochar effects on soil nutrient transformations. In: Lehmann J, Joseph S (eds) Biochar for environment management. Science and Technology. Earthscan, London, pp 251–270

    Google Scholar 

  • Demirabes A (2004) Effects of temperature and particle size on biochar yield from pyrolysis of agricultural residues. J Anal Appl Pyrolysis 72:243–248

    Article  CAS  Google Scholar 

  • Den Herder G, Van Isterdael G, Beeckman T, De Smet I (2010) The roots of a new green revolution. Trends Plant Sci 15(11):600–607

    Article  CAS  Google Scholar 

  • Du C, Zhou J, Wang H, Li S (2004) A preliminary study on natural matrix materials for controlled release nitrogen fertilizers. Pedosphere 14:45–52

    Google Scholar 

  • Du C, Tang D, Zhou J, Wang H, Shaviv A (2007) Prediction of nitrate release from polymer coated fertilizers using an artificial neural network model. Bio Syst Eng 99:478–486

    Google Scholar 

  • Eldridge S, Chen C, Xu Z, Meszaros I, Chan, KY (2010) Green waste biochar potentially reduces nitrogen fertiliser losses. In Proceedings of the 19th World Congress of Soil Science: Soil solutions for a changing world, Brisbane, Australia, 1–6 August 2010. Division Symposium 3.2 Nutrient best management practices. International Union of Soil Sciences (IUSS), c/o Institut für Bodenforschung, Universität für Bodenkultur, pp 100–103

    Google Scholar 

  • Entry JA, Sojka RE (2008) Matrix based fertilizers reduce nitrogen and phosphorus leaching in three soils. J Envir Manag 87:364–372

    Article  CAS  Google Scholar 

  • Fankem H, Nwaga D, Deubel A, Dieng L, Merbach W, Etoa FX (2006) Occurrence and functioning of phosphate solubilizing microorganisms from oil palm tree (Elaeis guineensis) rhizosphere in Cameroon. Afri J Biotech 5:24

    Google Scholar 

  • FAO (1965) Fertilizers and their use. FAO, Rome

    Google Scholar 

  • FAO (2011) Plant nutrition for food security: a guide for integrated nutrient management, FAO fertilizer and plant nutrition bulletin 16. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Farooq M, Wahid A, Siddique KHM (2012) Micronutrients application through seed treatments a review. J Soil Sci Plant Nutr 12:125–142

    Article  Google Scholar 

  • Farrel M, Kuhn TK, Macdonald LM, Maddern TM, Murphy DV, Hall PA, Singh BP, Baumann K, Krull ES Baldock JA (2013) Microbial utilization of biochar derived carbon. Sci Total Environ 465:288–297

    Article  CAS  Google Scholar 

  • Flinn JC, Marciano, VP (1984) Rice straw and stubble management

    Google Scholar 

  • Fujii T, Yazawa F (1989) Development of coated fertilizer. Jpn Soc Soil Sci Plant Nutr 34:101–109

    Google Scholar 

  • Gallardo-Larva F, Nogales R (1987) Effect of application of town refuse compost on the soil plant system – a review. Biol Wastes 19:35–62

    Article  Google Scholar 

  • Gartler J, Robinson B, Burton K, Clucas L (2013) Carbonaceous soil amendments to biofortify crop plants with zinc. Sci Total Environ 465:308–313

    Article  CAS  PubMed  Google Scholar 

  • Gerretsen FC (1948) The influence of microorganisms on the phosphate intake by the plant. Plant Soil 1(1):51–81

    Article  CAS  Google Scholar 

  • Ghimire SR, Craven KD (2013) Endophytes in low-input agriculture and plant biomass production. In: Saha MC, Bhandari HS, Bouton JH (eds) Bioenergy feedstocks: breeding and genetics. Wiley, Oxford, pp 249–265

    Chapter  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2005) Effect of the arbuscular mycorrhizae Glomus fasciculatum and G. macrocarpum on the growth and nutrient content of Cassia siamea in a semi-arid Indian wasteland soil. New For 29:63–73

    Article  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick B, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • González-Zertuche L, Vázquez-Yanes C, Gamboa A, Sánchez-Coronado ME, Aguilera P, Orozco-Segovia A (2001) Natural priming of Wigandia urens seeds during burial: effects on germination, growth and protein expression. Seed Sci Res 11(01):27–34

    Article  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Hagin J, Sneh M, Lowengart-Aycicegi A (2002) In: Johnston AE (ed) Fertigation fertilization through irrigation, IPI Research Topics No. 23. International Potash Institute, Basel

    Google Scholar 

  • Halvorson AD, Schlegel AJ (2012) Crop rotation effect on soil carbon and nitrogen stocks under limited irrigation. Agron J 104(5):1265

    Article  CAS  Google Scholar 

  • Halvorson AD, Del Grosso SJ, Reule CA (2008) Nitrogen, tillage, and crop rotation effects on nitrous oxide emissions from irrigated cropping systems. J Environ Qual 37(4):1337

    Article  CAS  Google Scholar 

  • Hamdani SAF, Aon M, Khalid M, Ali L, Aslam Z, Naveed M (2017) Application of Dalbergia sissoo biochar enhanced wheat growth, yield and nutrient recovery under reduced fertilizer doses in calcareous soil. Pak J Agric Sci 54:107–115

    Google Scholar 

  • Hardoim P, Van LO, Van JE (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, van-Overbeek LS, Berg G, Pirttila AM, Compant S, Campisano A, Doring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris D, Rashid A, Miraj G, Arif M, Shah H (2007) On-farm seed priming with zinc sulphate solution, a cost effective way to increase the maize yields of resource poor farmers. Field Crop Res 110:119–127

    Article  Google Scholar 

  • Heffer P, Prudehome M (2012) Fertilizer outlook 2012–2016. International Fertilizer Industry Association (IFA), Paris

    Google Scholar 

  • HGCA (2009) Information Sheet 05: assessing the nutrient content of cereal straw. HGCA, London. High value chemicals. J Environ Sci Health B 49:51–67

    Google Scholar 

  • Hopkins B, Ellsworth J (2005) Phosphorus availability with alkaline/calcareous soil. In Western Nutrient Management Conference 6:88–93

    Google Scholar 

  • Hwangbo H, Park RD, Kim YW, Rim YS, Park KH, Kim TH, Jang SS, Jim, KY (2003) 2-Ketogluconic acid production and phosphate solubilization by Enterobacter intermedium. Current microbiology 47(2): 87–92

    Article  CAS  PubMed  Google Scholar 

  • Jensen LS, Mueller T, Magid J, Nielsen NE (1997) Temporal variation of C and N mineralization, microbial biomass and extractable organic pools in soil after oilseed rape straw incorporation in the field. Soil Biol Biochem 29:1043–1055

    Article  CAS  Google Scholar 

  • Jin S, Yue G, Feng L, Han Y, Yu X, Zhang Z (2011) Preparation and properties of a coated slow-release and water-retention biuret phosphoramide fertilizer with superabsorbent. J Agric Food Chem 59(1):322–327

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Wang Y, He J, Yang Y, Yu X, Yue G (2013) Preparation and properties of a degradable interpenetrating polymer networks based on starch with water retention, amelioration of soil, and slow release of nitrogen and phosphorus fertilizer. J Appl Polym Sci 128(1):407–415

    Article  CAS  Google Scholar 

  • Jisha KC, Vijayakumari K, Puthur JT (2013) Seed priming for abiotic stress tolerance: an overview. Acta Physiol Plant 35:1381–1396

    Article  Google Scholar 

  • John RP, Tyagi RD, Brar SK, Surampalli RY, Prevost D (2011) Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit Rev Biotechnol 31:211–226

    Article  CAS  PubMed  Google Scholar 

  • Joner EJ, Jakobsen I (1995) Uptake of P32 from labeled organic matter by mycorrhizal and non-mycorrhizal subterranean clover (Trifolium subterraneum L). Plant Soil 172:221–227

    Article  CAS  Google Scholar 

  • Kaplan M, Orman Ş (1998) Effect of elemental Sulphur and Sulphur containing waste in a calcareous soil in Turkey. J Plant Nutr 21(8):1655–1665

    Article  CAS  Google Scholar 

  • Karimizarchi M, Aminuddin H, Khanif MY, Radziah O (2014) Elemental Sulphur application effects on nutrient availability and sweet maize (Zea mays L.) response in a high pH soil of Malaysia. Malaysian J Soil Sci 18:75–86

    Google Scholar 

  • Kaushal A, Lodhi AS, Singh KG (2011) Economics of growing sweet pepper under low tunnels. Prog Agric 24:67–72

    Google Scholar 

  • Kaymak HC, Guvenc I, Yarali F, Donmez MF (2009) The effects of bio-priming with PGPR on germination of radish (Raphanus sativus L.) seeds under saline conditions. Turk J Agric For 33:173–179

    CAS  Google Scholar 

  • Keswani C (2015). Proteomics studies of thermotolerant strain of Trichoderma spp. PhD thesis, Banaras Hindu University, Varanasi, India, p 126

    Google Scholar 

  • Keswani C, Bisen K, Singh V, Sarma BK, Singh HB (2016a) Formulation technology of biocontrol agents: present status and future prospects. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, New Delhi, pp 35–52

    Google Scholar 

  • Keswani C, Bisen K, Singh SP, Sarma BK, Singh HB (2016b) A proteomic approach to understand the tripartite interactions between plant-Trichodermapathogen: investigating the potential for efficient biological control. In: Hakeem KR, Akhtar MS (eds) Plant, soil and microbes, vol. 2. Mechanisms and molecular interactions. Springer, Cham, pp 79–93

    Chapter  Google Scholar 

  • Khalid MA (2018) Synchronized nitrogen release from polymer coated nitrochalk enhances nitrogen use efficiency and yield of wheat. Pak J Agric Sci 55(02):367–373

    Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi – current perspective. Arch Agron Soil Sci 56:73–98

    Article  CAS  Google Scholar 

  • Kim S, Dale B (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375

    Article  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998) Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: effect of carbon sources. Soil Biol Biochem 30(8–9):995–1003

    Article  CAS  Google Scholar 

  • Klikocka H (2011) The effect of Sulphur kind and dose on content and uptake of micronutrients by potato tubers (Solanum tuberosum L.). Acta Sci Pol Hort Cult 10:137–151

    Google Scholar 

  • Kolberg RL, Kitchen NR, Westfall DG, Peterson GA (1996) Cropping intensity and nitrogen management impact of dryland no-till rotations in the semi-arid Western Great Plains. J Prod Agric 9(4):517

    Article  Google Scholar 

  • Kumar A, Singh AK (2002) Improving nutrient and water use efficiency through fertigation. J Water Manage 10:42–48

    Google Scholar 

  • Lambers H, Raven J, Shaver G, Smith S (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23(2):95–103

    Article  PubMed  Google Scholar 

  • Lehmann J, Silva JPD, Seiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferrasol of the central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Sci 249:343–357

    CAS  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Biochar sequestration in terrestrial ecosystem- a review mitigation and adaptation. Strateg Glob Chang 11:403–427

    Article  Google Scholar 

  • Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686–5691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez BR, Bashan Y, Bacilio M (2011) Endophytic bacteria of Mammillaria fraileana, an endemic rock-colonizing cactus of the Southern Sonoran Desert. Arch Microbiol 193:527–541

    Article  CAS  PubMed  Google Scholar 

  • López-Urrutia E, Martínez-García M, Monsalvo-Reyes A, Salazar-Rojas V, Montoya R, Campos JE (2014) Differential RNA- and protein-expression profiles of cactus seeds capable of hydration memory. Seed Sci Res 24(2):91–99

    Article  CAS  Google Scholar 

  • Lui R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  Google Scholar 

  • Mäder P, Kaiser F, Adholeya A, Singh R, Uppal HS, Sharma AK, Srivastava R, Sahai V, Aragno M, Wiemken A, Johri BN, Fried PM (2011) Inoculation of root microorganisms for sustainable wheat–rice and wheat–black gram rotations in India. Soil Biol Biochem 43(3):609–619

    Article  CAS  Google Scholar 

  • Malhi SS, Lemke R (2007) Tillage, crop residue and N fertilizer effects on crop yield, nutrient uptake, soil quality and nitrous oxide gas emissions in a second 4-yr rotation cycle. Soil Till Res 96:269–283

    Article  Google Scholar 

  • Malinowski DP, Alloush GA, Belesky DP (1998) Evidence for chemical changes on the root surface of tall fescue in response to infection with the fungal endophyte Neotyphodium coenophialum. Plant Soil 205:1–12

    Article  CAS  Google Scholar 

  • Marschner P (2012) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic

    Google Scholar 

  • Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11(2):166–170

    Article  CAS  PubMed  Google Scholar 

  • Millner PD, Sikora LJ, Kaufman DD, Simpson ME (1998) Agricultural uses of biosolids and other recyclable municipal residues. In: Wright RJ, Kemper WD, Millner PD, Power JF, Korcack RF (eds) Agricultural uses of municipal, animal, and industrial byproducts, Conservation research reports 44. USDA Agricultural Research Survey, Washington, DC, pp 9–44

    Google Scholar 

  • Modaihsh AS, Al-Mustafa WA, Metwally AI (1989) Effect of elemental Sulphur on chemical changes and nutrient availability in calcareous soils. Plant Soil 116(1):95–101

    Article  CAS  Google Scholar 

  • Molla AH, Haque MM, Haque MA, Ilias GNM (2012) Trichoderma-enriched biofertilizer enhances production and nutritional quality of tomato (Lycopersicon esculentum mill.) and minimizes NPK fertilizer use. Agric Res 1(3):265–272

    Article  CAS  Google Scholar 

  • Montalvo D, McLaughlin MJ, Degryse F (2015) Efficacy of hydroxyapatite nanoparticles as phosphorus fertilizer in andisols and oxisols. Soil Sci Soc Am 79:551–558

    Article  CAS  Google Scholar 

  • Mostashari M, Muazardalan M, Karimian N, Hosseini HM, Rezai H (2008) Phosphorus fractions of selected calcareous soils of Qazvin province and their relationships with soil characteristics. Am Eurasian J Agric Environ Sci 3:547–553

    Google Scholar 

  • Müller H, Berg G (2008) Impact of formulation procedures on the effect of the biocontrol agent Serratia plymuthica HRO-C48 on Verticillium wilt in oilseed rape. BioControl 53(6):905–916

    Article  Google Scholar 

  • Munkholm LJ, Schjonning P, Debrosz K, Jensen HE, Christensen BT (2002) Aggregate strength and mechanical behaviour of a sandy loam soil under long term fertilization treatments. Eur J Soil Sci 53:129–137

    Article  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32(2):429–448

    Article  PubMed  Google Scholar 

  • Naeem MA, Khalid M, Ahmad Z, Naveed M (2016) Low pyrolytic temperature biochar improve growth and nutrient availability of maize on Typic Calciargid. Commun Soil Sci Plant Anal 47(1):41–51

    Article  CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Naveed M, Khalid M, Jones DL, Ahmad R, Zahir ZA (2008) Relative efficacy of Pseudomonas spp., containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of organic fertilizer. Pak J Bot 40:43–51

    Google Scholar 

  • Naveed M, Mitter B, Yousaf S, Pastar M, Afzal M, Sessitsch A (2013) The endophyte Enterobacter sp. FD17: a maize growth enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics. Biol Fertil Soils 50:249–262

    Article  CAS  Google Scholar 

  • Naveed M, Aziz MZ, Yaseen M (2017) Perspectives of endophytic microbes for legume improvement. In: Zaidi A et al (eds) Microbes for legume improvement. Springer, Switzerland, pp 277–299

    Chapter  Google Scholar 

  • Neary D, Klopatek C, Debano L, Ffolliott P (1999) Fire effects on belowground sustainability. A review and synthesis. For Ecol Manag 122:51–71

    Article  Google Scholar 

  • Nicholson FA, Chambers BJ, Mills AR, Strachan PJ (1997) Effects of repeated straw incorporation on crop fertilizer nitrogen requirements, soil mineral nitrogen and nitrate leaching losses. Soil Use Manag 36:136–142

    Article  Google Scholar 

  • Niranjan RS, Shetty NP, Shetty HS (2004) Seed bio-priming with Pseudomonas fluorescens isolates enhances growth of pearl millet plants and induces resistance against downy mildew. Int J Pest Manag 50:41–48

    Article  Google Scholar 

  • Nogueira MA, Magelhaes GC, Cardoso EJBN (2004) Manganese toxicity in mycorrhizal and phosphorus-fertilized soybean plants. J Plant Nutr 27:141–156

    Article  CAS  Google Scholar 

  • Noor S, Yaseen M, Naveed M, Ahmad R (2017) Use of controlled release phosphatic fertilizer to improve growth, yield and phosphorus use efficiency of wheat crop. Pak J Agric Sci 54:xxx, xxx; ISSN (print) 0552-9034, ISSN (online) 2076-0906. http://www.pakjas.com.pk

  • Obreza TA, Rouse RE (1992) Controlled-release fertilizers use on young Hamlin orange trees. Proc Soil Crop Sci Soc Fla 51:64–68

    Google Scholar 

  • Ofri IC, Niro RP, Weiner S (2007) Structural characterization of modern and fossilized charcoal produced in natural fires as determined by using electron energy loss spectroscopy. Chem Eur J 13:2306–2310

    Article  CAS  Google Scholar 

  • Parera CA, Cantliffe DJ (1994) Pre-sowing seed priming. Hortic Rev 16:109–141

    Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:362–370

    CAS  Google Scholar 

  • Ponnamperuma FN (1984) Straw as a source of nutrients for wetland rice. Organic Matter Rice 117:136

    Google Scholar 

  • Powlson DS, Jenkinson DS, Pruden G, Johnston AE (1985) The effect of straw incorporation on the uptake of nitrogen by winter wheat. J Sci Food Agric 36:26–30

    Article  CAS  Google Scholar 

  • Powlson DS, Glendining MJ, Coleman K, Whitmore AP (2011) Implications for soil properties of removing cereal straw: results from long-term studies. Agron J 103:279–287

    Article  CAS  Google Scholar 

  • Preston CM, Schmidit MWI (2006) Black (Pyrogenic) carbon. A synthesis of current knowledge and uncertainties with special consideration of boreal region. Biogeosciences 3:397–420

    Article  CAS  Google Scholar 

  • Puente ME, Bashan Y, Li CY, Lebsky VK (2008) Microbial populations and activities in the rhizoplane of rock-Weathering Desert plants. I. Root colonization and weathering of igneous rocks. Plant Biol 6(5):629–642

    Article  CAS  Google Scholar 

  • Raison RJ (1979) Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review. Plant Soil 51:73–108

    Article  CAS  Google Scholar 

  • Raj N, Shetty N, Shetty H (2004) Seed biopriming with Pseudomonas fluorescens strains enhances growth of pearl millet plants and induces resistance against downy mildew. Int J Pest Manag 50:41–48

    Article  Google Scholar 

  • Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D (2012) Seed germination and vigor. Annu Rev Plant Biol 63:507–533

    Article  CAS  PubMed  Google Scholar 

  • Raven KP, Hossner LR (1994) Soil phosphorus desorption kinetics and its relationship with plant growth. Soil Sci Soc Am J 58(2):416

    Article  Google Scholar 

  • Rehman A, Farooq M, Naveed M, Ozturk L, Nawaz A (2018a) Pseudomonas-aided zinc application improves the productivity and biofortification of bread wheat. Crop Past Sci 69:659–672

    Article  CAS  Google Scholar 

  • Rehman A, Farooq M, Naveed M, Nawaz A, Shahzad B (2018b) Seed priming of Zn with endophytic bacteria improves the productivity and grain biofortification of bread wheat. Eur J Agron 94:98–107

    Article  CAS  Google Scholar 

  • Rekha BK, Mahavishnan K (2008) Drip fertigation in vegetable crops with emphasis on lady’s finger (Abelmoschus esculentus (L.) Moench) – a review. Agric Rev 29:298–305

    Google Scholar 

  • Rezapour S (2014) Effect of sulfur and composted manure on SO4-S, P and micronutrient availability in a calcareous saline–sodic soil. Chem Ecol 30(2):147–155

    Article  CAS  Google Scholar 

  • Robinson D, Griffiths B, Ritz K, Wheatley R (1989) Root-induced nitrogen mineralisation: a theoretical analysis. Plant and Soil 117(2): 185–193

    Article  CAS  Google Scholar 

  • Rodriguez RJ, Henson J, Van-Volkenburgh E (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Rojas-Solís D, Zetter-Salmón E, Contreras-Pérez M, Rocha-Granados M d C, Macías-Rodríguez L, Santoyo G (2018) Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects. Biocatal Agric Biotechnol 13:46–52

    Article  Google Scholar 

  • Safaa MM, Khaled SM, Hanan SS (2013) Effect of elemental Sulphur on solubility of soil nutrients and soil heavy metals and their uptake by maize plants. J Am Sci 9:19–24

    Google Scholar 

  • Sainju UM, Stevens WB, Caesar-TonThat T, Liebig MA, Wang J (2014) Net global warming potential and greenhouse gas intensity influenced by irrigation, tillage, crop rotation, and nitrogen fertilization. J Environ Qual 43(3):777

    Article  PubMed  CAS  Google Scholar 

  • Sanders L, Kimmerly M, Murphy L (2007). A new method for influencing phosphate availability to plants. Fertilizer industry round table, Winston-Salem

    Google Scholar 

  • Santini BA, Martorell C (2013) Does retained-seed priming drive the evolution of serotiny in drylands? An assessment using the cactus Mammilaria hernandezii. Am J Bot 100:365–373

    Article  PubMed  Google Scholar 

  • Sathya S, Pitchai JG, Indirani R, Kannathasan M (2008) Effect of fertigation on availability of nutrients (N, P & K) in soil – a review. Agric Rev 29:214–219

    Google Scholar 

  • Sattar A, Asghar HN, Zahir ZA, Asghar M (2017) Bioactivation of indigenous and exogenously applied micronutrients through acidified organic amendment for improving yield and biofortification of maize in calcareous soil. Int J Agric Biol 19:1039–1046

    Article  CAS  Google Scholar 

  • Schjonning P, Christensen BT, Carstensen B (1994) Physical and chemical properties of a sandy loam receiving animal manure, mineral fertilizer or no fertilizer for 90 years. Eur J Soil Sci 45:257–268

    Article  Google Scholar 

  • Schulz B (2006) Mutualistic interactions with fungal root endophytes. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, New York, pp 261–279

    Chapter  Google Scholar 

  • Sessitsch A, Coenye T, Sturz AV (2005) Burkholderia phytofirmans sp. a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol 55:1187–1192

    Article  CAS  PubMed  Google Scholar 

  • Shaheen HL, Iqbal M, Azeem M, Shahbaz M, Shehzadi M (2016) K-priming positively modulates growth and nutrient status of salt-stressed cotton (Gossypium hirsutum) seedlings. Arch Agron Soil Sci 62:759–768

    Article  CAS  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2:587–600

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sharonova NL, Yapparov AK, Khisamutdinov NS, Ezhkova AM, Yapparov IA, Ezhkov VO, Degtyareva IA, Babynin EV (2015) Nanostructured water-phosphorite suspension is a new promising fertilizer. Nanotech Russia 10:651–661

    Article  CAS  Google Scholar 

  • Shaviv A (2001) Preparation methods and release mechanism of the controlled release fertilizer: agronomic efficiency and the environmental significances. Int Fertil Soc Proc 431:1–35

    Google Scholar 

  • Shenbagavalli S, Mahimairaja S (2012) Characterization and effect of biochar on nitrogen and carbon dynamics in soil. Int J Adv Biol Res 2:249–255

    Google Scholar 

  • Silgram M, Chambers BJ (2002) Effects of long term straw management and fertilizer nitrogen additions on soil nitrogen supply and crop yields at two sites in eastern England. J Agric Sci (Camb) 139:115–127

    Article  CAS  Google Scholar 

  • Singh HP (2002) Precision farming in horticulture. In: Proceedings of the national seminar cum workshop on Hi-tech horticulture and precision farming, 26–28 July 2012, Lucknow, pp 1–20

    Google Scholar 

  • Skwierawska M, Zawartka L, Skwierawski A, Nogalska A (2012) The effect of different sulfur doses and forms on changes of soil heavy metals. Plant Soil Environ 58(3):135–140

    Google Scholar 

  • Smil V (2002) Nitrogen and food production: proteins for human diets. Ambio 31:126–131

    Article  PubMed  Google Scholar 

  • Sohi S, Cpel EL, Krull E, Bol R (2009) Biochar, climate change and soil: a review of guide future research. Land Water Sci Res:1–56

    Google Scholar 

  • Song OR, Lee SJ, Lee YS, Lee SC, Kim KK, Choi YL (2008) Solubilization of insoluble inorganic phosphate by Burkholderia cepacia Da23 isolated from cultivated soil. Braz J Microbiol 39:151–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Sperber JI (1958) Solution of apatite by soil microorganisms producing organic acids. Aust J Agric Res 9(6):782

    Article  CAS  Google Scholar 

  • SSSA (2008) Glossary of soil science terms. Soil Science Society of America, Inc., Madison

    Google Scholar 

  • Stephen J, Jisha MS (2011) Gluconic acid production as the principal mechanism of mineral phosphate solubilization by Burkholderia sp. J Trop Agric 49:99–103

    CAS  Google Scholar 

  • Stevenson FJ, Cole MA (1999) Cycles of soil, carbon, nitrogen, phosphorus, sulphur micronutrients. Wiley, New York

    Google Scholar 

  • Stewart WM, Dibb DW, Johnston AE, Smyth TJ (2005) The contribution of commercial fertilizer nutrients to food production. Agron J 97(1):1–6

    Article  Google Scholar 

  • Tadych M, White JF, Moselio S (2009) Endophytic microbes. In: Schaechter M (ed) Encyclopedia of microbiology, 3rd edn. Academic, Oxford, pp 431–442

    Chapter  Google Scholar 

  • Taha SM, Mahmoud SAZ, Halim El-Damaty A, Abd El-Hafez AM (1969) Activity of phosphate-dissolving bacteria in Egyptian soils. Plant Soil 31(1):149–160

    Article  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA 108:20260–20264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmusk S, Abd El-Daim IA, Copolovici L, Tanilas T, Kännaste A, Behers L, Nevo E, Seisenbaeva G, Stenström E, Niinemets Ü (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9:960–986. https://doi.org/10.1371/journal.pone.0096086

    Article  CAS  Google Scholar 

  • Toth J, Milham PJ, Raison JM (1981) Ash from rice stubble inactivates Thiobencarb and Molinate. Weed Res 21:113–117

    Article  CAS  Google Scholar 

  • Trenkel ME (2010) Slow and controlled-release and stabilized fertilizers: an option for enhancing nutrient use efficiency in agriculture. International Fertilizer Industry Association (IFA), Paris

    Google Scholar 

  • Trenkel ME (2012) Slow and Controlled-release and stabilized fertilizers. An option for enhancing nutrient efficiency in agriculture, 2nd edn. IFA, Paris

    Google Scholar 

  • United Nations (2011) World population prospects: the 2010 revision, Standard variants. Updated: 28 June 2011. http://esa.un.org/wpp/Excel-Data/population.htm. Accessed 15 May 2013

  • Varvel GE (1994) Rotation and nitrogen fertilization effects on changes in soil carbon and nitrogen. Agron J 86(2):319

    Article  Google Scholar 

  • Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30(5–6):460–468

    Article  CAS  Google Scholar 

  • Viani RAG, Rodrigues RR, Dawson TE, Lambers H, Oliveira RS (2014) Soil pH accounts for differences in species distribution and leaf nutrient concentrations of Brazilian woodland savannah and seasonally dry forest species. Perspect Plant Ecol Evol Syst 16(2):64–74

    Article  Google Scholar 

  • Vidyalakshmi R, Paranthaman R, Bhakyaraj R (2009) Sulphur oxidizing bacteria and pulse nutrition- a review. World J Agric Sci 5:270–278

    CAS  Google Scholar 

  • Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 9(1):174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wainwright M (1987) Microbial sulfur oxidation in soil. Soil Prog (Oxford) 65:459–475

    Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckelhoven R, Neumann C, Von-Wettstein D (2005) The endophytic fungus Piriformis indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang AS, Angle JS, Chaney RL, Delorme TA, Reeves RD (2006) Soil pH effects on uptake of cd and Zn by Thlaspi caerulescens. Plant Soil 281(1–2):325–337

    Article  CAS  Google Scholar 

  • Whitelaw MA, Harden TJ, Helyar KR (1999) Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum. Soil Biol Biochem 31(5):655–665

    Article  CAS  Google Scholar 

  • Whiting SJ, Langlois KA, Vatanparast H, Greene-Finestone LS (2011) The vitamin D status of Canadians relative to the 2011 dietary reference intakes: an examination in children and adults with and without supplement use. Am J Clin Nutr 94(1):128–135

    Article  CAS  PubMed  Google Scholar 

  • Widowati, Asnah (2014) Biochar can enhance potassium fertilization efficiency and economic feasibility of maize cultivation. J Agric Sci 6:24–32

    Google Scholar 

  • Williams WA, Morse MD, Ruckman JE (1972) Burning vs incorporation of rice straw residues. Agron J 64:467–468

    Article  Google Scholar 

  • Wittwer SH, Teubner FG (1959) Foliar absorption of mineral nutrients. Annu Rev Plant Physiol Plant Mol Biol 10:13–32

    Article  CAS  Google Scholar 

  • Wu L, Liu M (2008) Preparation and characterization of cellulose acetate-coated compound fertilizer with controlled-release and water-retention. Polymer Adv Tech 19:785–792

    Article  CAS  Google Scholar 

  • Wu L, Liu M, Liang R (2008) Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention. Bioresour Technol 99(3):547–554

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK, Dave A, Sarkar A, Singh HB, Sarma BK (2013) Co-inoculated biopriming with Trichoderma, Pseudomonas and Rhizobium improves crop growth in Cicer arietinum and Phaseolus vulgaris. Inter J Agric Environ Biotechnol 6(2):255–259

    Google Scholar 

  • Yanni YG, Rizk RY, El-Fattah FK (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust J Plant Physiol 28:845–870

    CAS  Google Scholar 

  • Yaseen M, Aziz MZ, Manzoor A, Naveed M, Hamid Y, Noor S, Khalid MA (2017) Promoting growth, yield, and phosphorus-use efficiency of crops in maize–wheat cropping system by using polymer-coated diammonium phosphate. Commun Soil Sci Plant Anal 48:646–655

    Article  CAS  Google Scholar 

  • Yaseen M, Abbas T, Aziz MZ, Wakeel A, Humaira Y, Wazir A, Ullah A, Naveed M (2018) Microbial assisted foliar feeding of micronutrients enhance growth, yield and biofortification of wheat. Int J Agric Biol 20:353–360

    Article  CAS  Google Scholar 

  • Yasmeen H, Yaseen M, Aziz MZ, Naveed M, Arfan-ul-Haq M, Jilani G, Qadeer A, Abbas T (2018) Wheat residue management improves soil fertility and productivity of maize. Int J Agric Biol 20:2181–2188

    Google Scholar 

  • Yau S-K, Ryan J (2012) Does growing safflower before barley reduce barley yields under Mediterranean conditions? Agron J 104(6):1493

    Article  Google Scholar 

  • Yu Y, Xue L, Yang L (2014) Winter legumes in rice crop rotations reduces nitrogen loss, and improves rice yield and soil nitrogen supply. Agron Sustain Dev 34(3):633–640

    Article  CAS  Google Scholar 

  • Zahir ZA, Iqbal M, Arshad M, Naveed M, Khalid M (2007) Effectiveness of IAA, GA3 and kinetin blended with recycled organic waste for improving growth and yield of wheat (Triticum aestivum L.). Pak J Bot 39(3):761–768

    Google Scholar 

  • Zhang A, Cui L, Pan G, Li L, Hussain Q, Zhang X, Zheng J, Crowley D (2010) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from tai Lake plain, China. Agric Ecosyst Environ 139(4):469–475

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Naveed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aziz, M.Z., Naveed, M., Abbas, T., Siddique, S., Yaseen, M. (2019). Alternative Fertilizers and Sustainable Agriculture. In: Farooq, M., Pisante, M. (eds) Innovations in Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-23169-9_8

Download citation

Publish with us

Policies and ethics